

Knotwood Standard Fencing Calculation Booklet

Date Prepared ... March 26, 2020

Prepared for:

Knotwood a Division of OmniMax International, Inc. 30 Technology Pkwy S, Suite 400/Suite 600 Peachtree Corners, GA 30092 Phone...(855) 566-8966

Prepared by: <u>PVE, LLC</u> 2000 Georgetowne Drive, Suite 101 Sewickley, PA 15143 Phone ... (724) 444-1100

TABLE OF CONTENTS

Page No.

TITLE SHEET	1
TABLE OF CONTENTS	2
DESIGN CODES AND STANDARDS	3
GENERAL NOTES	4
DESIGN LOADS	5
DESIGN CALCULATIONS	8
APPENDIX 'A' (REFERENCES)	

The following codes and standards, including all specifications referenced within, apply to the design and construction of this project:

- IBC, INTERNATIONAL BUILDING CODE 2015
- FBC, FLORIDA BUILDING CODE 2017
- ASCE 7-10, MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES
- ADM, ALUMINUM DESIGN MANUAL 2010

- 1. Contractor to verify all dimensions in the field prior to installation. Do not scale off drawings.
- 2. All members shall be saw cut in field as required.
- 3. No splices shall be permitted unless indicated otherwise on the drawings.
- 4. Touch up all scratches with dealer provided colors to match.
- 5. Welding is not permitted, unless otherwise indicated on the drawings.
- 6. The contents show the application of aluminum Knotwood framing components only. The installing contractor is to refer to the project documents for additional requirements.
- 7. Dimensions herein are for engineering purposes only and must be reviewed for the purpose of approval. All conditions are subject to approval and to field verification prior to fabrication or installation.
- 8. Before ordering, fabricating or erecting any material, make any necessary surveys and measurements to verify that in place work has been built according to the contract documents and are within acceptable tolerances. This includes the original buildings and all additions thereto. Notify the Architect/Engineer and owner's representatives of any discrepancies prior to construction.
- 9. Temporary bracing of the system and safety during construction is solely the responsibility of the contractor. Temporary bracing of the system shall remain in place until the system is totally in place. Contractor shall coordinate locations of temporary bracing with other contractors. Refer to drawings for additional criteria.
- 10. This submittal is subject to the review and approval of the project Architect/Engineer of record prior to installation.
- 11. These design calculations are not a substitute for any NOA or FBPA required testing for product approval.
- 12. The fences contained within are not designed for any guardrail loading applications.
- 13. The fence spacing/heights are designed to a maximum height of 6' per the Florida Building Code Section 1616.2. Any heights greater than this shall be engineered on a project by project basis.
- 14. The fence posts shall be coated and embedded in concrete at the bases. If baseplate/anchorage are desired, they shall be engineered on a project by project basis.

Design Loads:

PVE LLC

2000 Georgetowne Drive, Suite 101 Sewickley, PA 15143-8992 724-444-1100 JOB TITLE Standard Knotwood Fencing

JOB NO.	SHEET NO.	
CALCULATED BY DSG	DATE	3/25/20
CHECKED BY JSU	DATE	3/25/20

www.struware.com

Code Search

Code: Florida Building Code 2017

Occupancy:

Occupancy Group =

Residential

Risk Category & Importance Factors:

Risk Category =	I
Wind factor =	1.00
Snow factor =	0.80
Seismic factor =	1.00

R

Type of Construction:

Fire Rating:

0	Roof =	0.0 hr
	Floor =	0.0 hr

Building Geometry:

Roof angle (θ)	0.00 / 12	0.0 deg
Building length (L)	24.0 ft	
Least width (B)	24.0 ft	
Mean Roof Ht (h)	6.0 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

<u>Roof</u>	0 to 200 sf:	20 psf
	200 to 600 sf:	24 - 0.02Area, but not less than 12 psf
	over 600 sf:	12 psf

Floor:

l ypical Floor		N/A
Partitions		N/A
Partitions	N/A	
Partitions		N/A
Partitions	N/A	

PVE LLC

2000 Georgetowne Dr Sewickley, PA 15 724-444-11	ive, Suite 101 143-8992 00	JOB NO. CALCULATED BY DSG CHECKED BY JSU	SHEET NO. DATE 3/25/20 DATE 3/25/20
Wind Loads :	ASCE 7 - 10		
Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Directionality (Kd) Kh case 1 Kh case 2 Type of roof <u>Topographic Factor</u> Topography Hill Height (H) Half Hill Length (Lh) Actual H/Lh = Use H/Lh = Nodified Lh = From top of crest: x =	115 mph 89.1 mph I C Open Building +/-0.00 0.85 0.849 0.849 Monoslope (<u>Kzt)</u> Flat 0.0 ft 0.00 ft 0.00 ft 0.00 ft 0.00 ft 0.0 ft	H< 15ft;exp C ∴ Kzt=1.0	vpwind) Lh H/2 H/2 H/2
	K = 0.000	ESCA	
H/Ln= 0.00 x/Lh = 0.00 z/Lh = 0.00 At Mean Roof Ht: Kzt	$K_1 = 0.000$ $K_2 = 0.000$ $K_3 = 1.000$ $= (1+K_1K_2K_3)^2 = 1.00$		pwind) $H/2$ $H/2$ H

20	DIDGE AF 2D	AVICYMMETDICAL	ышт
20		AND HYINE I NICHL	

JOB TITLE Standard Knotwood Fencing

Flexible st	ructure if natural freque	ncy < 1 Hz (T > 1 second).
If building	h/B>4 then may be flex	ible and should be investigated.
	h/B = 0.25	Rigid structure (low rise bldg)

Ri	gid Structure	Flexible or Dy	namically Se	ensitive St	ructure		
ē =	0.20	34 τcy (η ₁) =	0.0 Hz				
t = z _{min} =	500 ft 15 ft	Damping ratio (β) = /b =	0 0.65				
c = g _Q , g _v =	0.20 3.4	/α = Vz =	0.15 97.1				
L _z =	427.1 ft	N ₁ =	0.00				
Q =	0.95	R _n =	0.000				
$I_z =$	0.23	R _h =	28.282	η =	0.000	h =	6.0 ft
G =	0.90 use G = 0.85	R _B =	28.282	η =	0.000		
		R _L =	28.282	η =	0.000		
		g _R =	0.000				

G = 0.85 Using rigid structure default

R =

Gf =

0.000

0.000

Gust Effect Factor h =

В=

/z (0.6h) =

6.0 ft

24.0 ft

15.0 ft

PVE LLC

2000 Georgetowne Drive, Suite 101 Sewickley, PA 15143-8992 724-444-1100

E Stan	dard Kn	ntwood	Fencina
		ULWUUUU	I ENGING

	SHEET NO.		JOB NO.
3/25/20	DATE	DSG	CALCULATED BY
3/25/20	DATE	JSU	CHECKED BY
	-		

Wind Loads - Other Structures:

ures: ASCE 7 - 10

Ultimate Wind Pressures

Wind Factor = Gust Effect Factor (G) = Kzt =
 1.00
 0.85 Ultimate Wind Speed =
 115 mph

 1.00
 Exposure =
 C

A. Solid Freestanding Walls & Solid Signs (& open signs with less than 30% open)

		s/h =	1.00	<u>(</u>	Case A &	B
Dist to sign top (h)	6.0 ft	B/s =	2.00		C _f =	1.40
Height (s)	6.0 ft	Lr/s =	0.00	F = qz G	GCfAs =	29.1 As
Width (B)	12.0 ft	Kz =	0.849		As =	36.0 sf
Wall Return (Lr) =		qz =	24.4 psf		F =	1047 lbs
Directionality (Kd)	0.85					
Percent of open area		Open reduction			CaseC	
to gross area	0.0%	factor =	1.00	Horiz dist from		
				windward edge	Cf	F=qzGCfAs (psf)
	<u>C</u>	Case C reduction factors		0 to s	1.80	37.4 As
		Factor if s/h>0.8 =	0.80	s to 2s	1.20	24.9 As
	V	Vall return factor				
		for Cf at 0 to s =	1.00			

B. Open Signs & Lattice Frameworks (openings 30% or more of gross area)

Height to centroid of Af (z)	0.0 ft			Kz = Base pressure (qz) =	0.849 24.4 psf
Width (zero if round)	0.0 ft				
Diameter (zero if rect)	0.0 ft			$F = q_z G C_f A_f =$	0.0 Af
Percent of open area		Ĭ =	0	Solid Area: A _f =	0.0 sf
to gross area	0.0%	C _f =	2	F =	0 lbs
Directionality (Kd)	0.85			Design sig	n as solid sign

C. Chimneys, Tanks, Rooftop Equipment (h>60') & Similar Structures

Height to centroid of Af (z)	0.0 ft		Kz =	0.849
Cross-Section Directionality (Kd) Height (h) Width (D) Type of Surface	Square 0.90 0.0 ft 0.0 ft N/A		Base pressure (qz) =	25.9 psf h/D = 1.00
	Square (wind along dia	<u>gonal)</u>	Square (wind	d normal to face)
	Cf =	1.00	C _f =	1.30
	F = qz G Cf Af =	22.0 Af	$F = q_z G C_f A_f =$	28.6 Af
	Af =	sf	A _f =	0.0 sf
	F =	0 lbs	F =	0 lbs
D. Trussed Towers				
Height to centroid of Af (z)	0.0 ft		Kz =	0.849
∈ =	0.27		Base pressure (qz) =	27.3 psf
Tower Cross Section	triangle			
Member Shape	flat		Diagonal wind factor =	1
Directionality (Kd)	0.95		Round member factor =	1.000
			<u>Triangular C</u>	ross Section
			C _f =	2.38
			$F = q_z G C_f A_f =$	55.2 Af
		10.0	Solid Area: A _f =	0.0 sf
			F =	1 lbs

KnotwoodTM Design Calculation:

Methodology:

When checking <u>Knotwood™ Fencing</u> (slats, posts, etc.), the applied wind loads, generated from ASCE 7-10 and the Florida Building Code Section 1616.2, are compared to allowable tension and shear strengths per the Aluminum Design Manual. Per ASCE 7-10, for wind loading the fence is considered to be an "Other Structure - Solid Freestanding Wall". Please note the fences are not designed for guardrail loading.

These calculations are not a substitute for any NOA or FBPA required testing for product approval.

Miscellaneous:

The drawings and models shown within the calculation sheets are not meant to be used for fabrication nor performing work. They are for illustrative purposes only to assist in the preparation of the calculations and may not accurately represent the actual work to be performed.

Fastener Requirements:

Self-Tapping Metal Screws - #10 Minimum. Galvanized Unless Noted Otherwise Aluminum Where Noted At High/Salt Exposure

Materials Requirements:

Knotwood Battens:

Aluminum Alloy 6063-T6:	Fy=25 ksi (MIN)	Fu=30 ksi (MIN)
Aluminum Alloy 6061-T6:	Fy=35 ksi (MIN)	Fu=38 ksi (MIN)
Aluminum Alloy 6063-T5:	Fy=16 ksi (MIN)	Fu=22 ksi (MIN)

All Aluminum Welds:

5556 Electrode: Fu=46 ksi

Material Allowable Stress:

Per the ADM Tables 2-19 to 2-21:

Bending Stress:

 $F_{ab6061} := 19.5 \ ksi$ $F_{ab6063} := 15.2 \ ksi$ $F_{ab6063T5} := 5.2 \ ksi$

Shear Stress:

$$S_{I} := \frac{(5.91 - 2 \ (0.059))}{0.059} = 98.2 \qquad \text{Use:} \qquad F_{avSI50} := \frac{38665}{S_{I}^{2}} \ ksi = 4.01 \ ksi \qquad (6'' \text{ Slat})$$

$$S_2 := \frac{(3.94 - 2 \ (0.118))}{0.118} = 31.4 \qquad \text{Use:} \qquad F_{av4x4} := 16.5 \ \textbf{ksi} - 0.107 \ \textbf{ksi} \cdot S_2 = 13.14 \ \textbf{ksi} \qquad (4x4 \text{ Post})$$

$$S_{3} \coloneqq \frac{(1.69 - 2 \ (0.197))}{0.197} = 6.6 \qquad \text{Use:} \qquad F_{av2.5x2.5} \coloneqq 16.5 \ \textit{ksi} - 0.107 \ \textit{ksi} \cdot S_{3} = 15.8 \ \textit{ksi} \qquad (2.5x2.5 \ \text{Post})$$

Aluminum Modulus of Elasticity: *E* := 10100 *ksi*

Material Section Properties:

Section Properties: 4x4 Post (KESG100100):		
$I_{x100100} \coloneqq 1822940 \ mm^4$ (Ixx per Knotwood Techfiles)	<u>v.s.</u>	
$y_{x100100} = 50 mm$	Í	
$S_{x100100} \coloneqq \frac{I_{x100100}}{y_{x100100}} = (3.6 \cdot 10^4) \ mm^3$		
$S_{x100100} = 2.2 \ in^3$		
$I_{y100100} \coloneqq 1822940 \ mm^4$ (Iyy per Knotwood Techfiles)	ŀ	
$y_{y100100} = 50 mm$	į	
$S_{y100100} := \frac{I_{y100100}}{y_{y100100}} = (3.6 \cdot 10^4) \ mm^3$ $S_{y100100} = 2.2 \ in^3$	L	CALCULATED ON lxx =1822.94 x lyy =1822.94 x
6" Wide Slat (KES15016):	<u>vs</u>	75.00
$I_{xS150} := 24500 \ mm^4$ (Ixx per Knotwood Techfiles)	16.00 ±0.55	

 $y_{xS150} := 8 mm$

$$S_{xS150} \coloneqq \frac{I_{xS150}}{y_{xS150}} = (3.1 \cdot 10^3) \ mm^3$$

 $S_{xS150} = 0.2 \ in^3$

 $I_{ySI50} \coloneqq 1050490 \ mm^4$ (Iyy per Knotwood Techfiles)

 $y_{yS150} := 125 \ mm$

$$S_{yS150} := \frac{I_{yS150}}{y_{yS150}} = (8.4 \cdot 10^3) \ mm^3$$

 $S_{yS150} = 0.5 \ in^3$

CALCULATED ON NOMINAL WALL THICKNESS Ixx =1822.94 x 10E3 mmE4 Iyy =1822.94 x 10E3 mmE4

50.00 ±0.90

Х

Corner Post (KESP2C6565EF):

 $I_{x2C65} := 338470 \ mm^4$ (Ixx per Knotwood Techfiles)

 $y_{x2C65} := 33.36 \ mm$

$$S_{x2C65} := \frac{I_{x2C65}}{y_{x2C65}} = (1.0 \cdot 10^4) \ mm^3$$

 $S_{x2C65} = 0.6 \text{ in}^3$

 $I_{v2C65} := 338470 \ mm^4$ (Iyy per Knotwood Techfiles)

 $y_{v2C65} = 33.36 \ mm$

$$S_{y2C65} := \frac{I_{y2C65}}{y_{y2C65}} = (1.0 \cdot 10^4) \ mm^3$$

 $S_{y2C65} = 0.6 \ in^3$

CALCULATED ON NOMINAL WALL THICKNESS lxx =338.47 x 10E3 mmE4 lyy =338.47 x 10E3 mmE4

Load Requirements:

Dead Load:

 $DL_{self1W6525} := 0.960 \frac{kgf}{m} = 0.6 \ plf \qquad (Self weight of 1 way post per linear foot)$ $DL_{self100100} := 3.138 \frac{kgf}{m} = 2.1 \ plf \qquad (Self weight of 4" post per linear foot)$ $DL_{selfS15016} := 1.411 \frac{kgf}{m} = 0.9 \ plf \qquad (Self weight of 6" slat per linear foot)$ $DL_{selfGFS} := 1.227 \frac{kgf}{m} = 0.8 \ plf \qquad (Self weight of small gate frame per linear foot)$ $DL_{self2W6565} := 2.557 \frac{kgf}{m} = 1.7 \ plf \qquad (Self weight of 2 way post per linear foot)$ $DL_{self2C6565} := 2.035 \frac{kgf}{m} = 1.4 \ plf \qquad (Self weight of corner post per linear foot)$

Wind Loads:

The maximum ultimate design wind load is determined from a 115 mph wind for up to a 6' high fence per Florida Building Code Section 1616.2.1:

 $w_{Wind} := 29.1 \ psf$

 $w_{WindNominal} \coloneqq 0.6 \cdot w_{Wind} = 17.5 \text{ psf}$

(Nominal Design Wind Loading)

Figure 1 - Typical 4x4 Fencing Plan View (2.5X2.5 Fence Similar)

Figure 2 - Typical 4x4 Fencing Elevation View (2.5x2.5 Fence Similar)

(Tributary width on Slat)

Check 6" Slats (KES15016):

$$d := 72$$
 in (Max span considered)

Loading:

 $DL_{Total} := DL_{selfS15016} = 0.9 \ plf$

 $w_{WLTotal} := w_{Wind} \cdot l = 14.6 \ plf$

Max forces considering slat "pinned"

DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):

l := 6 *in*

$$M_{Dist} \coloneqq \frac{0.6 \ w_{WLTotal} \cdot d^2}{8} = 0.5 \ kip \cdot in$$
$$V_{Dist} \coloneqq \frac{0.6 \ w_{WLTotal} \cdot d}{2} + \frac{DL_{Total} \cdot d}{2} = 29.0 \ lbf$$

Check Slat Bending:

$$f_{bS150} := \frac{M_{Dist}}{S_{xS150}} = 2.5 \ ksi < F_{ab6063T5} = 5.2 \ ksi \therefore \text{ OK}$$

Check Slat Shear:

$$A_{S150} := 2 \cdot 147 \ mm \cdot 1.5 \ mm = 0.7 \ in^{2}$$
$$f_{vS150} := \frac{V_{Dist}}{A_{S150}} = (4.2 \cdot 10^{-2}) \ ksi \ < F_{avS150} = 4.0 \ ksi \ \therefore \text{ OK}$$

Therefore, use of KES15016 is Acceptable

Check Slat Fasteners:

Allowable Connection Shear:

The allowable connection shear is determined according to Section J.5.6, which specifies a safety factor $\Omega = 3.0$ for fastener connection shear for building-type structures.

$\Omega \coloneqq 3.0$	(ASD building-type structures)
<i>D</i> := 0.19 <i>in</i>	(#10 Fastener Diameter)
$t_l := 0.059$ in	(Slat Thickness)
$t_2 := 0.079$ in	(Slat Support Thickness)

Section J.5.6.1 addresses bearing. Since the edge distance is 0.5 in. > 0.38 in. = 2(0.19 in.) = 2D, the allowable bearing force is 2FtuDt/W. Using Ftu from Table A.3.4, the allowable shear for bearing is:

$$F_{tu} := 22 \ ksi$$
 (Table A.3.4)

$$F_{bearing} \coloneqq \frac{2 \cdot F_{tu} \cdot D \cdot t_l}{\Omega} = 164.4 \ \textit{lbf} > \frac{V_{Dist}}{2} = 15 \ \textit{lbf} \quad \therefore \text{ OK}$$

Fastener Pull Over:

For $t_2 > t_1$, Pull Over is not a limit state.

Fastener Shear:

 $F_{vu} := 1.15$ *kip* (#10 Ultimate Shear)

$$F_{shear} \coloneqq \frac{F_{vu}}{\Omega} = 383.3 \ lbf \qquad > \quad \frac{V_{Dist}}{2} = 15 \ lbf \quad \therefore \text{ OK}$$

Fastener Tension:

Nominal Pullout (ADM J.5.5, 0.060in ∎≤∎ Le ∎≤∎0.125 in)

$K_s := 1.01$	ADM J.5.5.1.1
D = 0.2 in	Nominal diameter of screw
$F_{ty2} := 30 \ ksi$	Tensile yield strength of member not in contact with screw head
$L_e := t_2 = \langle 7.9 \cdot 10^{-2} \rangle$ in	Screw engaged length
$R_n \coloneqq K_s \cdot D \cdot L_e \cdot F_{ty2} = 454.8 \ lbf$	(#10 Ultimate Pullout - ADM J.5-1)
$F_{pullout} \coloneqq \frac{R_n}{\Omega} = 151.6 \ lbf \qquad > \ \frac{V_{Dis}}{2}$	$d = 15 \ lbf$ \therefore OK

Therefore, use of #10 Screw is acceptable

Check 4x4 6' High Posts (6' Max Spacing):

$$d := 6 \ ft \qquad (\text{Max height of post}) \qquad l := 6 \ ft \qquad \text{Tributary width on post}$$
$$DL_{Total} := \frac{12 \ DL_{selfS15016} \cdot l}{d} + DL_{self100100} + 2 \cdot DL_{self1W6525} = 14.8 \ plf \qquad \text{Total dead load on post}$$

 $w_{WLTotal} := w_{Wind} \cdot l = 174.6 \ plf$

Max forces considering post cantilevered.

DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):

$$M_{Dist2} \coloneqq \frac{0.6 \ w_{WLTotal} \cdot d^2}{2} = 1.9 \ kip \cdot ft$$
$$V_{Dist2} \coloneqq 0.6 \ w_{WLTotal} \cdot d + DL_{Total} \cdot d = 717.2 \ lbf$$

Check Post Bending:

$$S_{y100100} = 2.2 \text{ in}^3$$
 Section Modulus for 4x4 Posts (KESG100100)

$$F_{cr4x4} := \frac{M_{Dist2}}{S_{y100100}} = 10.2 \ ksi$$
 < $F_{ab6061} = 19.5 \ ksi$: OK 4x4 Post Maximum

Check Post Shear:

$$A_{P4x4} := 2 \cdot 3.58 \text{ in} \cdot 0.118 \text{ in} = 0.8 \text{ in}^2 \quad \text{(Web Area)}$$
$$F_{vpost} := \frac{V_{Dist2}}{A_{P4x4}} = 0.8 \text{ ksi} \quad < F_{av4x4} = 13.1 \text{ ksi} \quad \therefore \text{ OK}$$

Check 2-1/2x2-1/2 4' High Posts (Max 6' Spacing) :

$$d := 4 \ ft \qquad (\text{Max height of post}) \qquad l := 6 \ ft \qquad \text{Tributary width on post}$$
$$DL_{Total} := \frac{8 \ DL_{selfS15016} \cdot l}{d} + DL_{self2W6565} = 13.1 \ plf \qquad \text{Total dead load on post}$$

 $w_{WLTotal} := w_{Wind} \cdot l = 174.6 \ plf$

Max forces considering post cantilevered

DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):

$$M_{Dist3} \coloneqq \frac{0.6 \ w_{WLTotal} \cdot d^2}{2} = 0.8 \ kip \cdot ft$$

 $V_{Dist3} := 0.6 \ w_{WLTotal} \cdot d + DL_{Total} \cdot d = 471.4 \ lbf$

Check Post Bending:

$$F_{cr65x65} := \frac{M_{Dist3}}{S_{y2W6565}} = 13.4 \text{ ksi} < F_{ab6063} = 15.2 \text{ ksi} \therefore \text{ OK} \qquad 2-1/2x2-1/2 \text{ Post Maximum}$$

Check Post Shear:

 $A_{P6565} := 2.5 \text{ in} \cdot 0.118 \text{ in} = 0.3 \text{ in}^2 \quad \text{(Web Area)}$ $F_{vpost} := \frac{V_{Dist3}}{A_{P6565}} = 1.6 \text{ ksi} \quad < F_{av2.5x2.5} = 15.8 \text{ ksi} \quad \therefore \text{ OK}$

Check 2-1/2x2-1/2 5' High Posts (Max 4' Spacing) :

$$d := 5 \ ft \qquad (\text{Max height of post}) \qquad l := 4 \ ft \qquad \text{Tributary width on post}$$
$$DL_{Total} := \frac{10 \ DL_{selfS15016} \cdot l}{d} + DL_{self2W6565} = 9.3 \ plf \qquad \text{Total dead load on post}$$

 $w_{WLTotal} := w_{Wind} \cdot l = 116.4 \ plf$

Max forces considering post cantilevered

DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):

$$M_{Dist4} \coloneqq \frac{0.6 \ w_{WLTotal} \cdot d^2}{2} = 0.9 \ kip \cdot ft$$

 $V_{Dist4} := 0.6 \ w_{WLTotal} \cdot d + DL_{Total} \cdot d = 395.7 \ lbf$

Check Post Bending:

$$F_{cr65x65} \coloneqq \frac{M_{Dist4}}{S_{y2W6565}} = 14.0 \text{ ksi} < F_{ab6063} = 15.2 \text{ ksi} \therefore \text{ OK} \qquad 2-1/2x2-1/2 \text{ Post Maximum}$$

Check Post Shear:

 $A_{P6565} := 2.5 \text{ in} \cdot 0.118 \text{ in} = 0.3 \text{ in}^2 \quad \text{(Web Area)}$ $F_{vpost} := \frac{V_{Dist4}}{A_{P6565}} = 1.3 \text{ ksi} \quad < F_{av2.5x2.5} = 15.8 \text{ ksi} \quad \therefore \text{ OK}$

Designed by: DSG Checked by: JSU Date: 03/26/2020

Check 2-1/2x2-1/2 6' High Posts (Max 3' Spacing) :

$$d := 6 \ ft \qquad (\text{Max height of post}) \qquad l := 3 \ ft \qquad \text{Tributary width on post}$$
$$DL_{Total} := \frac{12 \ DL_{selfS15016} \cdot l}{d} + DL_{self2W6565} = 7.4 \ plf \qquad \text{Total dead load on post}$$
$$w_{WLTotal} := w_{Wind} \cdot l = 87.3 \ plf$$

Max forces considering post cantilevered

DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):

$$M_{Dist5} \coloneqq \frac{0.6 \ w_{WLTotal} \cdot d^2}{2} = 0.9 \ kip \cdot ft$$

 $V_{Dist5} := 0.6 \ w_{WLTotal} \cdot d + DL_{Total} \cdot d = 358.7 \ lbf$

Check Post Bending:

$$F_{cr65x65} \coloneqq \frac{M_{Dist5}}{S_{y2W6565}} = 15.1 \text{ ksi} < F_{ab6063} = 15.2 \text{ ksi} \therefore \text{ OK} \qquad 2-1/2x2-1/2 \text{ Post Maximum}$$

Check Post Shear:

$$A_{P6565} := 2.5 \text{ in} \cdot 0.118 \text{ in} = 0.3 \text{ in}^2 \qquad \text{(Web Area)}$$
$$F_{vpost} := \frac{V_{Dist5}}{A_{P6565}} = 1.2 \text{ ksi} \qquad < F_{av2.5x2.5} = 15.8 \text{ ksi} \quad \therefore \text{ OK}$$

APPENDIX 'A'

(References)

Section 1616.2 from the 2017 Florida Building Code:

1616.2 General design for specific occupancies and structures.

1616.2.1 Fences.

Fences not exceeding 6 feet (1829 mm) in height from grade may be designed for 75 mph (33 m/s) fastest mile wind speed or 115 mph (40 m/s) 3second gust.

1616.2.1.1 Wood fences.

Wood fence design shall be as specified by Section 2328.

1616.2.2 Sway forces in stadiums.

1. The sway force applied to seats in stadiums, grandstands, bleachers and reviewing stands shall be not less than 24 pounds per lineal foot (350 N/m), applied perpendicularly and along the seats.

2. Sway forces shall be applied simultaneously with gravity loads.

3. Sway forces need not be applied simultaneously with other lateral forces.

1616.3 Deflection.

1616.3.1 Allowable deflections.

The deflection of any structural member or component when subjected to live, wind and other superimposed loads set forth herein shall not exceed the following:

1. Roof and ceiling or components supporting plaster

L/360

SEL	ECT(OR G	UIDE &	PERFOR	RMANCE	DATA								
Part	Numb	er	1076000	1112000	1080000	1132000	1114000	1117000	1119000	1121000	1124000	1125000	1078000	1126000
Description		10-16x3/4*	12-14x7/8"	12-14x1"	12-14x1*	12-14x1-1/2"	12-14x2"	1/4-14x1"	1/4-14x1-1/2"	1/4-20x1-1/8"	1/4-20x1-1/2*	1/4-20x2*	1/4-20x2-1/2	
Head Style		HWH	HWH	HWH	UPFH***	HWH	HWH	HWH	HWH	HWH	HWH	HWH	HWH	
Drill Point			3	3	3	3	3	3	3	3	4	4	4	4
Drilli	ng Cap	,	.150"	.187"	.187*	.187"	.187"	.187"	.210"	.210'	.210"312"	.210"312"	.210"312"	.210"312'
Max	Load			(T T)	(T-T)		a n	(TT)	(TT)	(TT)	m	m		
Bear	ing Ar	sa*	-500° L	ATO			1.000	1.500	450	.950	.500'	.830	1.330"	1.830"
Insta	llation	Tool	5/16" Driv- Tru [™] Socket (P/N: 1513910)	5/16" Driv- Tru ¹⁷ Socket (PIN: 1513910)	5/16" Driv- Tru [®] Socket (Pilk: 1513910)	#3 Phillips Bit	5/16" Driv- Tru [™] Socket (P/N: 1513910)	5/16" Driv- Tru ¹¹ Socket (P/N: 1513910)	3/8" Driv- Tru [®] Socket (Pilk: 1574910)	3/8" Driv- Tru [™] Socket (P/N: 1574910)	3/8" Driv- Tru [™] Socket (P/N: 1574910)	3/8" Driv- Tru [™] Sockel (P/N: 1574910)	3/8" Driv- Tru [®] Socker (PiN: 1574910)	3/8" Driv- t Tru [™] Socke (P/N: 1574910
PUL	LOUT	VAL	UES (AVE	RAGE LB	S. ULTIM	ATE)								
		ksi												
	18	45.5	401	400	400	400	400	400	475	475				
	16	63	699	561	561	561	561	561	631	631	827	827	827	827
	14	55.5	1010	964	964	964	964	964	1062	1062	1258	1258	1258	1258
L GAUG	12	63	1680	1516	1516	1516	1516	1516	1878	1878	1946	1946	1946	1946
STEE	1/8	56.9	2183	2149	2149	2149	2149	2149	2320	2320	2685	2685	2685	2685
	3/16	65.3		2877	2877	2497	2877	2877	3668	3668	3572	3572	3572	3572
	1/4	48.1									4719	4719	4719	4719
	5/16	49.1									4699	4699	4699	4699
63-T5	1/8	32.4	745	1008	1008	1008	1008	1008	1017	1017	970	970	970	970
KUM 60	1/4	32.1		2543	2543	2462	2543	2543	3080	3080	2760	2760	2760	2760
ALUMIT	3/8	27.7									3851	3851	3851	3851
SHE	AR V	ALUE	S (AVERA	GE LBS.	ULTIMAT	E)								
	18-	18	996	965	965	965	965	965	1100	1100	1026	1026	1026	1026
	18-	14	1872	1803	1803	1803	1803	1803	2132	2132	2089	2089	2089	2089
1.1	16-	16	1331	1360	1360	1360	1360	1360	1414	1414	1359	1359	1359	1359
L GAUC	14-	14		1815	1815	1815	1815	1815	2439	2439	2357	2357	2357	2357
STEE	1/8-:	3/16							2636	2636	2748	2748	2748	2748
	3/16	-1/4									2881	2881	2881	2881
	12-	1/4									2843	2843	2843	2843
WUM	1/8-	1/8	1526	1846	1846	1846	1846	1846	2087	2087	2106	2106	2106	2106
ALUMP 6063-7	1/8-	1/4		2488	2488	2180	2488	2488	3328	3328	3062	3062	3062	3062
MEC	HAN	ICAL	PROPERT	TIES										
Yie	ld Streg	jth,	134 ksi	134 ksi	134 ksi	134 ksi	134 ksi	134 ksi	134 ksi	134 ksi	134 ksi	134 ksi	134 ksi	134 ksi
F, Torre	Ksi (Mi	°a) nath	920 Mpa	920 Mpa	920 Mpa	920 Mpa	920 Mpa	920 Mpa	920 Mpa	920 Mpa	920 Mpa	920 Mpa	920 Mpa	920 Mpa
F	ne Stre Ksi (M	ngun Pa)	1054 Mpa	1054 Mpa	1054 Mpa	1054 Mpa	1054 Mpa	1054 Mpa	1054 Mpa	1054 Mpa	1054 Mpa	1054 Mpa	1054 Mpa	1054 Mp
			on local bearing	na area is indi	cated by brac	kets.						***	Undercut Ph	Wine Elet M

INSTALLATION GUIDELINES

Markov Buildex 1349 W. Bryn Mawr Ave. I Itasca, IL 60143 800-BUILDEX I www.itwbuildex.com Climasei ACR^m and Tels Select^m are trademarks of ITW Buildax and lineis Too Works, Inc. Deil-Flex⁶ is a registered trademark of Elco, Inc.

> May be installed using a standard screw gun with a depth sensitive nosepiece. For optimal fastener performance, the screw gun should be a minimum of 6 amps and have an RPM range of 1800 to 2500 RPM.

> Overdriving may result in torsional failure of the fas-tener or stripout of the substrate.

> The fastener must penetrate beyond the metal structure a minimum of 3 threads.

> Reference the Selector Guide for the appropriate installation tool.

© 2011 ITW Buildex and Illinois Tool Works, Inc.