

Date Prepared ... March 26, 2020
Prepared for:
Knotwood a Division of OmniMax International, Inc.
30 Technology Pkwy S, Suite 400/Suite 600
Peachtree Corners, GA 30092
Phone...(855) 566-8966

Prepared by:
PVE, LLC
2000 Georgetowne Drive, Suite 101
Sewickley, PA 15143
Phone ... (724) 444-1100

TABLE OF CONTENTS

Page No.
TITLE SHEET 1
TABLE OF CONTENTS 2
DESIGN CODES AND STANDARDS 3
GENERAL NOTES 4
DESIGN LOADS 5
DESIGN CALCULATIONS 8
APPENDIX 'A' (REFERENCES)

DESIGN CODES AND STANDARDS

The following codes and standards, including all specifications referenced within, apply to the design and construction of this project:

- IBC, INTERNATIONAL BUILDING CODE - 2015
- FBC, FLORIDA BUILDING CODE - 2017
- ASCE 7-10, MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES
- ADM, ALUMINUM DESIGN MANUAL - 2010

GENERAL NOTES

1. Contractor to verify all dimensions in the field prior to installation. Do not scale off drawings.
2. All members shall be saw cut in field as required.
3. No splices shall be permitted unless indicated otherwise on the drawings.
4. Touch up all scratches with dealer provided colors to match.
5. Welding is not permitted, unless otherwise indicated on the drawings.
6. The contents show the application of aluminum Knotwood framing components only. The installing contractor is to refer to the project documents for additional requirements.
7. Dimensions herein are for engineering purposes only and must be reviewed for the purpose of approval. All conditions are subject to approval and to field verification prior to fabrication or installation.
8. Before ordering, fabricating or erecting any material, make any necessary surveys and measurements to verify that in place work has been built according to the contract documents and are within acceptable tolerances. This includes the original buildings and all additions thereto. Notify the Architect/Engineer and owner's representatives of any discrepancies prior to construction.
9. Temporary bracing of the system and safety during construction is solely the responsibility of the contractor. Temporary bracing of the system shall remain in place until the system is totally in place. Contractor shall coordinate locations of temporary bracing with other contractors. Refer to drawings for additional criteria.
10. This submittal is subject to the review and approval of the project Architect/Engineer of record prior to installation.
11. These design calculations are not a substitute for any NOA or FBPA required testing for product approval.
12. The fences contained within are not designed for any guardrail loading applications.
13. The fence spacing/heights are designed to a maximum height of 6 ' per the Florida Building Code Section 1616.2. Any heights greater than this shall be engineered on a project by project basis.
14. The fence posts shall be coated and embedded in concrete at the bases. If baseplate/anchorage are desired, they shall be engineered on a project by project basis.

Design Loads:

PVE LLC

2000 Georgetowne Drive, Suite 101
Sewickley, PA 15143-8992
724-444-1100
job title Standard Knotwood Fencing

JOB NO.	SHEET NO.	
CALCULATED BY DSG	DATE	$3 / 25 / 20$
CHECKED BY JSU	DATE	$3 / 25 / 20$

Code Search

Code: Florida Building Code 2017
Occupancy:
Occupancy Group $=\quad \mathrm{R} \quad$ Residential

Risk Category \& Importance Factors:

Risk Category $=$	$\quad 1$
Wind factor $=$	1.00
Snow factor $=$	0.80
Seismic factor $=$	1.00

Type of Construction:
Fire Rating:

$$
\begin{array}{ll}
\text { Roof }= & 0.0 \mathrm{hr} \\
\text { Floor }= & 0.0 \mathrm{hr}
\end{array}
$$

Building Geometry:

Roof angle (θ)	$0.00 / 12$	0.0 deg
Building length (L)	24.0 ft	
Least width (B)	24.0 ft	
Mean Roof Ht (h)	6.0 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

$$
\begin{aligned}
& \text { Roof } \quad \begin{array}{l}
0 \text { to } 200 \mathrm{sf:} \\
200 \text { to } 600 \mathrm{sf}: \\
\text { over } 600 \mathrm{sf}: \\
\quad 24-0.02 \mathrm{psf}
\end{array}
\end{aligned}
$$

Floor:

Typical Floor		N/A
Partitions		N/A
Partitions	N/A	
Partitions		N/A
Partitions	N/A	

PVE LLC
2000 Georgetowne Drive, Suite 101
Sewickley, PA 15143-8992
724-444-1100
jOB TITLE Standard Knotwood Fencing

JOB NO.	SHEET NO.	
CALCULATED BY DSG	DATE	$3 / 25 / 20$
CHECKED BY JSU	DATE	$3 / 25 / 20$

Wind Loads:

Ultimate Wind Speed	115 mph
Nominal Wind Speed	89.1 mph
Risk Category	I
Exposure Category	C
Enclosure Classif.	Open Building
Internal pressure	$+/-0.00$
Directionality (Kd)	0.85
Kh case 1	0.849
Kh case 2	0.849
Type of roof	Monoslope

Topographic Factor (Kzt)

Topography		Flat
Hill Height $\quad(\mathrm{H})$	0.0 ft	
Half Hill Length (Lh)	0.0 ft	
Actual H/Lh	$=$	0.00
Use H/Lh $=$	0.00	
Modified Lh $=$	0.0 ft	
From top of crest: $\mathrm{x}=$	0.0 ft	
Bldg up/down wind?	downwind	

$$
\begin{array}{rr}
\text { H/Lh }=0.00 & \mathrm{~K}_{1}=0.000 \\
\text { x/Lh }=0.00 & \mathrm{~K}_{2}=0.000 \\
\text { z/Lh }=0.00 & \mathrm{~K}_{3}=1.000 \\
\text { At Mean Roof Ht: } & \\
& \text { Kzt }=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{\wedge} 2=1.00
\end{array}
$$

PVE LLC
2000 Georgetowne Drive, Suite 101 Sewickley, PA 15143-8992 724-444-1100
job title Standard Knotwood Fencing

job No.	SHEET NO.	
CALCULATED BY DSG	DATE	3/25/20
CHECKED BY JSU	DATE	3/25/20

Wind Loads - Other Structures: \quad ASCE 7-10
Ultimate Wind Pressures

Wind Factor $=$	1.00		
Gust Effect Factor (G)	$=$	0.85 Ultimate Wind Speed $=$	115 mph
$\mathrm{Kzt}=$	1.00	Exposure $=$	C

A. Solid Freestanding Walls \& Solid Signs (\& open signs with less than 30% open)

		$\mathrm{s} / \mathrm{h}=$	1.00
Dist to sign top (h)	6.0 ft	$\mathrm{B} / \mathrm{s}=$	2.00
Height (s)	6.0 ft	Lr/s =	0.00
Width (B)	12.0 ft	Kz =	0.849
Wall Return (Lr) =		$q z=$	24.4 psf
Directionality (Kd)	0.85		
Percent of open area to gross area	0.0\%	uction factor $=$	1.00
		ction fac	
		$h>0.8=$	0.80
		actor	1.00

Case A \& B		
	$\mathrm{C}_{\mathrm{f}}=$	1.40
$F=q z$	CfAs $=$	29.1 As
	As $=$	36.0 sf 1047 lbs
CaseC		
Horiz dist from windward edge	$\underline{\text { Cf }}$	F=qzGCfAs (psf)
0 to s	1.80	37.4 As
s to 2 s	1.20	24.9 As

B. Open Signs \& Lattice Frameworks (openings 30\% or more of gross area)

C. Chimneys, Tanks, Rooftop Equipment ($\mathrm{h}>60^{\prime}$) \& Similar Structures

Height to centroid of $\mathrm{Af}(\mathrm{z})$	0.0 ft
Cross-Section	Square
Directionality (Kd)	0.90
Height (h)	0.0 ft
Width (D)	0.0 ft
Type of Surface	N/A

$\mathrm{Kz}=$	0.849
Base pressure $(\mathrm{qz})=$	25.9 psf
	$\mathrm{h} / \mathrm{D}=1.00$

Square (wind along diagonal)
Cf $=1.00$
F = qz G Cf Af $=\quad$ 22.0 Af
Af $=\quad$ sf
$\mathrm{F}=\quad 0 \mathrm{lbs}$

Square (wind normal to face)		
$\mathrm{C}_{f}=$	1.30	
$\mathrm{~F}=\mathrm{q}_{\mathrm{z}} G \mathrm{C}_{\mathrm{f}} \mathrm{A}_{\mathrm{f}}$	$=$	$\mathbf{2 8 . 6} \mathbf{~ \mathbf { ~ f f }}$
A_{f}	$=$	0.0 sf
F	$=$	0 lbs

D. Trussed Towers

Height to centroid of $\operatorname{Af}(z) \quad 0.0 \mathrm{ft}$

$$
\epsilon=0.27
$$

Tower Cross Section triangle
Member Shape flat Directionality (Kd) 0.95

| $\mathrm{Kz}=$ | 0.849 |
| ---: | :---: | :---: |
| Base pressure $(\mathrm{qz})=$ | 27.3 psf |
| | |
| Diagonal wind factor $=$ | 1 |
| Round member factor $=$ | 1.000 |

Triangular Cross Section
$\mathrm{C}_{\mathrm{f}}=2.38$
$\mathrm{F}=\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{f}} \mathrm{A}_{\mathrm{f}}=\quad$ 55.2 Af
Solid Area: $A_{f}=\quad 0.0 \mathrm{sf}$
$F=\quad 1 \mathrm{lbs}$

Knotwood ${ }^{\text {TM }}$ Design Calculation:

Methodology:

When checking Knotwood ${ }^{\text {TM }}$ Fencing (slats, posts, etc.), the applied wind loads, generated from ASCE 7-10 and the Florida Building Code Section 1616.2, are compared to allowable tension and shear strengths per the Aluminum Design Manual. Per ASCE 7-10, for wind loading the fence is considered to be an "Other Structure Solid Freestanding Wall". Please note the fences are not designed for guardrail loading.

These calculations are not a substitute for any NOA or FBPA required testing for product approval.

Miscellaneous:

The drawings and models shown within the calculation sheets are not meant to be used for fabrication nor performing work. They are for illustrative purposes only to assist in the preparation of the calculations and may not accurately represent the actual work to be performed.

Fastener Requirements:

Self-Tapping Metal Screws - \#10 Minimum.
Galvanized Unless Noted Otherwise
Aluminum Where Noted At High/Salt Exposure

Materials Requirements:

Knotwood Battens:

Aluminum Alloy 6063-T6:	Fy=25 ksi (MIN)	Fu=30 ksi (MIN)
Aluminum Alloy 6061-T6:	Fy=35 ksi (MIN)	$\mathrm{Fu}=38 \mathrm{ksi}(\mathrm{MIN})$
Aluminum Alloy 6063-T5:	Fy=16 ksi (MIN)	$\mathrm{Fu}=22 \mathrm{ksi}(\mathrm{MIN})$

All Aluminum Welds:

5556 Electrode: $\quad \mathrm{Fu}=46 \mathrm{ksi}$

Material Allowable Stress:

Per the ADM Tables 2-19 to 2-21:
Bending Stress:

$$
F_{a b 6061}:=19.5 \mathrm{ksi} \quad F_{a b 6063}:=15.2 \mathrm{ksi} \quad \quad F_{a b 6063 T 5}:=5.2 \mathrm{ksi}
$$

Shear Stress:

$$
\begin{aligned}
& S_{1}:=\frac{(5.91-2(0.059))}{0.059}=98.2 \quad \text { Use: } \quad F_{a v S 150}:=\frac{38665}{S_{1}^{2}} k s i=4.01 \mathrm{ksi} \\
& S_{2}:=\frac{(3.94-2(0.118))}{0.118}=31.4 \quad \text { Use: } \quad F_{a v 4 x 4}:=16.5 \mathrm{ksi}-0.107 \mathrm{ksi} \cdot S_{2}=13.14 \mathrm{ksi} \\
& S_{3}:=\frac{(1.69-2(0.197))}{0.197}=6.6 \quad \text { Use: } \quad F_{a v 2.5 x 2.5}:=16.5 k s i-0.107 k s i \cdot S_{3}=15.8 k s i \quad(2.5 \times 2.5 \text { Post })
\end{aligned}
$$

Aluminum Modulus of Elasticity:
$E:=10100 \mathrm{ksi}$

Material Section Properties:

Section Properties:
4x4 Post (KESG100100):

$$
\begin{aligned}
& I_{x 100100}:=1822940 \mathrm{~mm}^{4}(\text { Ixx per Knotwood Techfiles }) \\
& y_{x 100100}:=50 \mathrm{~mm} \\
& S_{x 100100}:=\frac{I_{x 100100}}{y_{x 100100}}=\left(3.6 \cdot 10^{4}\right) \mathrm{mm}^{3} \\
& S_{x 100100}=2.2 \mathrm{in}^{3} \\
& I_{y 100100}:=1822940 \mathrm{~mm}^{4}(\text { Iyy per Knotwood Techfiles }) \\
& y_{y 100100}:=50 \mathrm{~mm} \\
& S_{y 100100}:=\frac{I_{y 100100}}{y_{y 100100}}=\left(3.6 \cdot 10^{4}\right) \mathrm{mm}^{3} \\
& S_{y 100100}=2.2 \mathrm{in}^{3}
\end{aligned}
$$

CALCULATED ON NOMINAL WALL THICKNESS
$\mathrm{xx}=1822.94 \times 10 E 3 \mathrm{mmE4}$
$\mathrm{lyy}=1822.94 \times 10 E 3 \mathrm{mmE4}$

6" Wide Slat (KES15016):
$I_{x S 150}:=24500 \mathrm{~mm}^{4} \quad$ (Ixx per Knotwood Techfiles)
$y_{x S 150}:=8 \mathrm{~mm}$
$S_{x S 150}:=\frac{I_{x S 150}}{y_{x S 150}}=\left(3.1 \cdot 10^{3}\right) \mathrm{mm}^{3}$
$S_{x S 150}=0.2$ in 3
$I_{y S 150}:=1050490 \mathrm{~mm}^{4} \quad$ (Iyy per Knotwood Techfiles)
mant
CALCULATED ON NOMNAL WALL THCCNEESS

$y_{y S 150}:=125 \mathrm{~mm}$
$S_{y S 150}:=\frac{I_{y S 150}}{y_{y S 150}}=\left(8.4 \cdot 10^{3}\right) \mathrm{mm}^{3}$
$S_{y S 150}=0.5 \mathrm{in}^{3}$

Two Way Post (KESP2W6565):
$I_{x 2 W 6565}:=441020 \mathrm{~mm}^{4}$ (Ixx per Knotwood Techfiles)
$y_{x 2 W 6565}:=32.50 \mathrm{~mm}$
$S_{x 2 W 6565}:=\frac{I_{x 2 W 6565}}{y_{x 2 W 6565}}=\left(1.4 \cdot 10^{4}\right) \mathrm{mm}^{3}$
$S_{x 2 W 6565}=0.8$ in 3
$I_{y 2 W 6565}:=401390 \mathrm{~mm}^{4} \quad$ (Iyy per Knotwood Techfiles)
$y_{y 2 W 6565}:=32.71 \mathrm{~mm}$
$S_{y 2 W 6565}:=\frac{I_{y 2 W 6565}}{y_{y 2 W 6565}}=\left(1.2 \cdot 10^{4}\right) \mathrm{mm}^{3}$

CALCULATED ON NOMINAL WALL THICKNESS $\mathrm{l} \times \mathrm{x}=441.02 \times 10 \mathrm{C} 3 \mathrm{mmE4}$
$\mathrm{lyy}=401.39 \times 10 \mathrm{E} 3 \mathrm{mmE4}$
$S_{y 2 W 6565}=0.7$ in 3

Corner Post (KESP2C6565EF):
$I_{x 2 C 65}:=338470 \mathrm{~mm}^{4} \quad$ (Ixx per Knotwood Techfiles)
$y_{x 2 C 65}:=33.36 \mathrm{~mm}$
$S_{x 2 C 65}:=\frac{I_{x 2 C 65}}{y_{x 2 C 65}}=\left(1.0 \cdot 10^{4}\right) \mathrm{mm}^{3}$
$S_{x 2 C 65}=0.6 \boldsymbol{i n}^{3}$
$I_{y 2 C 65}:=338470 \mathrm{~mm}^{4} \quad$ (Iyy per Knotwood Techfiles)
$y_{y 2 C 65}:=33.36 \mathrm{~mm}$
$S_{y 2 C 65}:=\frac{I_{y 2 C 65}}{y_{y 2 C 65}}=\left(1.0 \cdot 10^{4}\right) \mathrm{mm}^{3}$
$S_{y 2 C 65}=0.6 \boldsymbol{i n}^{3}$

Calculated on nominal wall thickness
$1 \mathrm{xx}=338.47 \times 10 \mathrm{E} 3 \mathrm{mmE} 4$
lyy $=338.47 \times 10 \mathrm{E} 3 \mathrm{mmE} 4$

Load Requirements:

Dead Load:

$D L_{\text {selfiW6525 }}:=0.960 \frac{\mathrm{~kg} f}{\mathrm{~m}}=0.6 \mathrm{plf}$
(Self weight of 1 way post per linear foot)
$D L_{\text {self100100 }}:=3.138 \frac{\mathrm{~kg} f}{\mathrm{~m}}=2.1 \mathrm{plf}$
(Self weight of $4 "$ post per linear foot)
$D L_{\text {selfSl5016 }}:=1.411 \frac{\mathrm{kgf}}{\boldsymbol{m}}=0.9 \mathrm{plf}$
(Self weight of 6" slat per linear foot)
$D L_{\text {selfGFS }}:=1.227 \frac{\mathrm{~kg} f}{\mathrm{~m}}=0.8$ plf
(Self weight of small gate frame per linear foot)
$D L_{\text {self2W6565 }}:=2.557 \frac{\mathrm{kgf}}{\mathrm{m}}=1.7 \mathrm{plf}$
(Self weight of 2 way post per linear foot)
$D L_{\text {self2C6565 }}:=2.035 \frac{\mathrm{kgf}}{\mathrm{m}}=1.4 \mathrm{plf}$
(Self weight of corner post per linear foot)

Wind Loads:

The maximum ultimate design wind load is determined from a 115 mph wind for up to a 6 high fence per Florida Building Code Section 1616.2.1:
$w_{\text {Wind }}:=29.1 \mathrm{psf}$
$w_{\text {WindNominal }}:=0.6 \cdot w_{\text {Wind }}=17.5 \mathrm{psf}$
(Nominal Design Wind Loading)

Figure 1 - Typical 4x4 Fencing Plan View (2.5X2.5 Fence Similar)

Figure 2-Typical 4x4 Fencing Elevation View (2.5x2.5 Fence Similar)

Check 6" Slats (KES15016):

$d:=72$ in (Max span considered) $\quad l:=6$ in \quad (Tributary width on Slat)
Loading:
$D L_{\text {Total }}:=D L_{\text {selfSl5016 }}=0.9$ plf
$w_{\text {WLTotal }}:=w_{\text {Wind }} \cdot l=14.6 \mathrm{plf}$
Max forces considering slat "pinned"
DL + 0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):
$M_{D_{\text {ist }}}:=\frac{0.6 w_{\text {WLTotal }} \cdot d^{2}}{8}=0.5 \mathrm{kip} \cdot \mathrm{in}$
$V_{\text {Dist }}:=\frac{0.6 w_{\text {WLTotal }} \cdot d}{2}+\frac{D L_{\text {Total }} \cdot d}{2}=29.0 \mathrm{lbf}$

Check Slat Bending:

$$
f_{b S I 50}:=\frac{M_{D i s t}}{S_{x S 150}}=2.5 \mathrm{ksi} \quad<F_{a b 606375}=5.2 \mathrm{ksi} \therefore \mathrm{OK}
$$

Check Slat Shear:

$A_{S I 50}:=2 \cdot 147 \mathrm{~mm} \cdot 1.5 \mathrm{~mm}=0.7 \mathrm{in}^{2}$
$f_{v S I 50}:=\frac{V_{\text {Dist }}}{A_{S I 50}}=\left(4.2 \cdot 10^{-2}\right) \mathrm{ksi}<F_{\text {avSI50 }}=4.0 \mathrm{ksi} \quad \therefore \mathrm{OK}$

Therefore, use of KES15016 is Acceptable

Check Slat Fasteners:

Allowable Connection Shear:
The allowable connection shear is determined according to Section J.5.6, which specifies a safety factor $\Omega=3.0$ for fastener connection shear for building-type structures.

$$
\begin{array}{ll}
\Omega:=3.0 & \text { (ASD building-type structures) } \\
D:=0.19 \text { in } & \text { (\#10 Fastener Diameter) } \\
t_{1}:=0.059 \text { in } & \text { (Slat Thickness) } \\
t_{2}:=0.079 \text { in } & \text { (Slat Support Thickness) }
\end{array}
$$

Section J.5.6.1 addresses bearing. Since the edge distance is $0.5 \mathrm{in} .>0.38 \mathrm{in} .=2(0.19 \mathrm{in})=.2 \mathrm{D}$, the allowable bearing force is $2 \mathrm{FtuDt} / \mathrm{W}$. Using Ftu from Table A.3.4, the allowable shear for bearing is:

$$
F_{t u}:=22 \text { ksi } \quad \text { (Table A.3.4) }
$$

$$
F_{\text {bearing }}:=\frac{2 \cdot F_{t u} \cdot D \cdot t_{l}}{\Omega}=164.4 \mathrm{lbf} \quad>\quad \frac{V_{\text {Dist }}}{2}=15 \mathrm{lbf} \quad \therefore \mathrm{OK}
$$

Fastener Pull Over:

For $t_{2}>t_{1}$, Pull Over is not a limit state.

Fastener Shear:

$$
\begin{aligned}
& F_{v u}:=1.15 \mathrm{kip} \quad(\# 10 \text { Ultimate Shear }) \\
& F_{\text {shear }}:=\frac{F_{v u}}{\Omega}=383.3 \mathrm{lbf} \quad>\quad \frac{V_{\text {Dist }}}{2}=15 \mathrm{lbf} \quad \therefore \text { OK }
\end{aligned}
$$

Fastener Tension:

Nominal Pullout (ADM J.5.5, $0.060 \mathrm{in} \llbracket \leq \llbracket \mathrm{Le} \llbracket \leq \llbracket 0.125 \mathrm{in})$
$K_{s}:=1.01$
$D=0.2$ in
$F_{t y 2}:=30 k s i$
$L_{e}:=t_{2}=\left(7.9 \cdot 10^{-2}\right)$ in
$R_{n}:=K_{s} \cdot D \cdot L_{e} \cdot F_{t y 2}=454.8 \mathrm{lbf}$

$$
F_{\text {pullout }}:=\frac{R_{n}}{\Omega}=151.6 \mathrm{lbf} \quad>\frac{V_{\text {Dist }}}{2}=15 \mathrm{lbf} \quad \therefore \text { OK }
$$

Therefore, use of \#10 Screw is acceptable

Check 4x 4 6' High Posts (6' Max Spacing):

$$
\begin{array}{ll}
d:=6 \mathrm{ft} \quad \text { (Max height of post) } \quad l:=6 \mathrm{ft} & \text { Tributary width on post } \\
D L_{\text {Total }}:=\frac{12 D L_{\text {selfSl55016}} \cdot l}{d}+D L_{\text {selffi00100 }}+2 \cdot D L_{\text {selflW6525 }}=14.8 \mathrm{plf} & \text { Total dead load on post } \\
w_{\text {WLTotal }}:=w_{\text {Wind }} \cdot l=174.6 \mathrm{plf} &
\end{array}
$$

Max forces considering post cantilevered.
DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):
$M_{\text {Dist } 2}:=\frac{0.6 w_{\text {WLTotal }} \cdot d^{2}}{2}=1.9 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Dist } 2}:=0.6 w_{\text {WLTotal }} \cdot d+D L_{\text {Total }} \cdot d=717.2 \mathrm{lbf}$

Check Post Bending:

$S_{y 100100}=2.2$ in $^{3} \quad$ Section Modulus for 4×4 Posts (KESG100100)
$F_{c r \times x x}:=\frac{M_{D i s t 2}}{S_{y 100100}}=10.2 \mathrm{ksi} \quad<F_{\text {abb061 }}=19.5 \mathrm{ksi} \quad \therefore$ OK $\quad 4 \times 4$ Post Maximum

Check Post Shear:

$$
\begin{aligned}
& A_{P 4 x 4}:=2 \cdot 3.58 \mathrm{in} \cdot 0.118 \mathrm{in}=0.8^{\mathrm{in}^{2} \quad \quad(\text { Web Area })} \\
& F_{v p o s t}:=\frac{V_{\text {Dist2 }}}{A_{P 4 x 4}}=0.8 \mathrm{ksi} \quad<F_{\text {av4x4}}=13.1 \mathrm{ksi} \quad \therefore \mathrm{OK}
\end{aligned}
$$

Check 2-1/2x2-1/2 4' High Posts (Max 6' Spacing) :

$$
\begin{array}{ll}
d:=4 \mathrm{ft} \quad(\text { Max height of post }) \quad l:=6 \mathrm{ft} & \text { Tributary width on post } \\
D L_{\text {Totala }}:=\frac{8 D L_{\text {self/Sl5016}} \cdot l}{d}+D L_{\text {self2W6565 }}=13.1 \mathrm{plf} & \text { Total dead load on post } \\
w_{\text {WLTotal }}:=w_{\text {Wind }} \cdot l=174.6 \mathrm{plf} &
\end{array}
$$

Max forces considering post cantilevered
DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):
$M_{\text {Dist } 3}:=\frac{0.6 w_{\text {WLTotal }} \cdot d^{2}}{2}=0.8 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Dist3 }}:=0.6 w_{\text {WLTotal }} \cdot d+D L_{\text {Totala }} \cdot d=471.4 \mathrm{lbf}$

Check Post Bending:

$$
F_{c r 65665}:=\frac{M_{D i s t 3}}{S_{y 2 W 6565}}=13.4 \mathrm{ksi} \quad<F_{a b 6063}=15.2 \mathrm{ksi} \quad \therefore \text { OK } \quad 2-1 / 2 \times 2-1 / 2 \text { Post Maximum }
$$

Check Post Shear:

$$
\begin{aligned}
& A_{P 6565}:=2.5 \mathrm{in} \cdot 0.118 \mathrm{in}=0.3 \mathrm{in}^{2} \quad \text { (Web Area) } \\
& F_{v p o s t}:=\frac{V_{D i s t 3}}{A_{P 6565}}=1.6 \mathrm{ksi} \quad<F_{a v 2.5 x 2.5}=15.8 \mathrm{ksi} \quad \therefore \mathrm{OK}
\end{aligned}
$$

Check 2-1/2x2-1/2 5' High Posts (Max 4' Spacing) :

$$
\begin{array}{ll}
d:=5 \mathrm{ft} \quad(\text { Max height of post }) \quad l:=4 \mathrm{ft} & \text { Tributary width on post } \\
D L_{\text {Totala }}:=\frac{10 D L_{\text {selfSSI5016 }} \cdot l}{d}+D L_{\text {self2W6565 }}=9.3 \mathrm{plf} & \text { Total dead load on post } \\
w_{\text {WLTotal }}:=w_{\text {Wind }} \cdot l=116.4 \mathrm{plf} &
\end{array}
$$

Max forces considering post cantilevered
DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):
$M_{\text {Dist } 4}:=\frac{0.6 w_{\text {WLTotal }} \cdot d^{2}}{2}=0.9 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Dist } 4}:=0.6 w_{\text {WLTotal }} \cdot d+D L_{\text {Total }} \cdot d=395.7 \mathrm{lbf}$

Check Post Bending:

$$
F_{c r 65655}:=\frac{M_{D i s t 4}}{S_{y 2 W 6565}}=14.0 \mathrm{ksi} \quad<F_{a b 6063}=15.2 \mathrm{ksi} \quad \therefore \text { OK } \quad 2-1 / 2 \times 2-1 / 2 \text { Post Maximum }
$$

Check Post Shear:

$$
\begin{aligned}
& A_{P 6565}:=2.5 \mathrm{in} \cdot 0.118 \mathrm{in}=0.3 \mathrm{in}^{2} \quad \text { (Web Area) } \\
& F_{v p o s t}:=\frac{V_{\text {Dist } 4}}{A_{P 6565}}=1.3 \mathrm{ksi} \quad<F_{a v 2.5 x 2.5}=15.8 \mathrm{ksi} \quad \therefore \mathrm{OK}
\end{aligned}
$$

Check 2-1/2x2-1/2 6' High Posts (Max 3' Spacing):

$$
\begin{array}{ll}
d:=6 \mathrm{ft} \quad(\text { Max height of post }) \quad l:=3 \mathrm{ft} & \text { Tributary width on post } \\
D L_{\text {Totala }}:=\frac{12 D L_{\text {selfSS15016}} \cdot l}{d}+D L_{\text {self2W6565 }}=7.4 \mathrm{plf} & \text { Total dead load on post } \\
w_{\text {WLTotal }}:=w_{\text {Wind }} \cdot l=87.3 \mathrm{plf} &
\end{array}
$$

Max forces considering post cantilevered
DL +0.6 WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):
$M_{\text {Dists }}:=\frac{0.6 w_{\text {WLTotala }} \cdot d^{2}}{2}=0.9 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Dist } 5}:=0.6 w_{\text {WLTotal }} \cdot d+D L_{\text {Total }} \cdot d=358.7 \mathrm{lbf}$

Check Post Bending:

$$
F_{c r 65 x 65}:=\frac{M_{\text {Dist5 }}}{S_{y 2 W 6565}}=15.1 \mathrm{ksi} \quad<F_{\text {ab6063 }}=15.2 \mathrm{ksi} \quad \therefore \text { OK } \quad 2-1 / 2 \times 2-1 / 2 \text { Post Maximum }
$$

Check Post Shear:

$$
\begin{aligned}
& A_{P 6565}:=2.5 \mathrm{in} \cdot 0.118 \mathrm{in}=0.3 \mathrm{in}^{2} \quad \text { (Web Area) } \\
& F_{v p o s t}:=\frac{V_{\text {Dist } 5}}{A_{P 6565}}=1.2 \mathrm{ksi} \quad<F_{\text {av2.5x2.5}}=15.8 \mathrm{ksi} \quad \therefore \text { OK }
\end{aligned}
$$

APPENDIX 'A'

(References)

Section 1616.2 from the 2017 Florida Building Code:

1616.2 General design for specific occupancies and structures.
1616.2.1 Fences.

Fences not exceeding 6 feet (1829 mm) in height from grade may be designed for $75 \mathrm{mph}(33 \mathrm{~m} / \mathrm{s}$) fastest mile wind speed or $115 \mathrm{mph}(40 \mathrm{~m} / \mathrm{s}$) 3 second gust.
1616.2.1.1 Wood fences.

Wood fence design shall be as specified by Section 2328.
1616.2.2 Sway forces in stadiums.

1. The sway force applied to seats in stadiums, grandstands, bleachers and reviewing stands shall be not less than 24 pounds per lineal foot ($350 \mathrm{~N} / \mathrm{m}$), applied perpendicularly and along the seats.
2. Sway forces shall be applied simultaneously with gravity loads.
3. Sway forces need not be applied simultaneously with other lateral forces.
1616.3 Deflection.
1616.3.1 Allowable deflections.

The deflection of any structural member or component when subjected to live, wind and other superimposed loads set forth herein shall not exceed the following:

1. Roof and ceiling or components supporting plaster

SELECTOR GUIDE \＆PERFORMANCE DATA

Part Number			1076000	1112000	1080000	1132000	1114000	1117000	1119000	1121000	1124000	1125000	1075000	1126000
Description			10－16x3．30	12－14＊776	12－14x ¹ $^{-1}$	12－14x ${ }^{\prime \prime}$	12－14×1－1／2	12－14x 2	$14.14 \times 1{ }^{-1}$	1／4－14x1－1／2	1／4－20x1－1／8	1／4－20x1－1／2	14－2002	14－20x2－1／2
Head Style			HMH	HWH	HWH	UPFH ${ }^{\text {＂＊}}$	HWH	HWH	HWH	HWH	HMH	HWH	HWH	HWH
Drill Point			3	3	3	3	3	3	3	3	4	4	4	4
Drilling Cap			．150	． 187	．187	． 187	． 187	． 187	210^{\prime}	210°	． $2100^{\circ} \cdot .312$	$210^{\circ} \cdot .312$	$210^{\circ} \cdot 312^{\circ}$	． $210^{\circ}-312^{\prime}$
Max Load Bearing Area＊														
Installation Tool			5／16 Driv－ Tru＂Socket （PNE：1513910）	5／16＂Driv－ Tru＂Socket ［PN： 1513910 ］	$\begin{array}{\|c\|} \hline 5 / 16^{*} \text { Driv- } \\ \text { Tru } \\ \hline \text { TPNE Socket } 1513910 \mid \\ \hline \end{array}$	$\begin{gathered} \text { đ3 Phillips } \\ \text { Bit } \end{gathered}$	5／16 ${ }^{-}$Driv－ Tru＂Socket （PIN：1513910）	$\left\|\begin{array}{c} \text { 5/16" Driv- } \\ \text { Tri" Socket } \\ \mid \text { PN: } 1513310] \end{array}\right\|$	$\begin{array}{\|c\|} \hline 3 / 8^{\prime \prime} \text { Driv- } \\ \text { Tru" Socket } \\ \text { (PNE: 18Tap10\| } \end{array}$	3／8＊Driv－ Tri＂Socket （TMk	3／8＂Driv－ Tru＂Socket （PN：1574910）		$\left\|\begin{array}{c} 3 / 8^{\circ} \text { Driv- } \\ \text { Tru } \\ \text { (PNE: Socket } 1574210 \mid \end{array}\right\|$	3／8＊Driv－ Tru＂Socket （P1 1574910$)$
PULLOUT VALUES（AVERAGE LBS．ULTIMATE）														
$\begin{aligned} & \text { w } \\ & \frac{3}{3} \\ & \text { 宸 } \end{aligned}$		ksi												
	18	45.5	401	400	400	400	400	400	475	475				
	16	63	699	561	561	561	561	561	631	631	827	827	827	827
	14	55.5	1010	964	964	964	964	964	1062	1062	1258	1258	1258	1258
	12	63	1680	1516	1516	1516	1516	1516	1878	1878	1946	1946	1946	1946
	1／8	56.9	2183	2149	2149	2149	2149	2149	2320	2320	2685	2685	2685	2685
	3／16	65.3		2877	2877	2497	2877	2877	3668	3668	3572	3572	3572	3572
	1／4	48.1									4719	4719	4719	4719
	5／16	49.1									4699	4699	4699	4699
	1／8	32.4	745	1008	1008	1009	1008	1008	1017	1017	970	970	970	970
	1／4	32.1		2543	2543	2462	2543	2543	3080	3080	2760	2760	2760	2760
	3／8	27.7									3851	3851	3851	3851
SHEAR VALUES（AVERAGE LBS．ULTIMATE）														
$\begin{array}{\|c\|} \hline \stackrel{訁}{4} \\ \frac{3}{5} \\ \text { 宩 } \end{array}$		18	996	965	965	965	965	965	1100	1100	1026	1026	1026	1026
		14	1872	1803	1803	1803	1803	1803	2132	2132	2089	2089	2089	2089
		－16	1331	1360	1360	1360	1360	1360	1414	1414	1359	1359	1359	1359
		14		1815	1815	1815	1815	1815	2439	2439	2357	2357	2357	2357
		3／16							2636	2636	2748	2748	2748	2748
		－1／4									2881	2881	2881	2881
		1／4									2843	2843	2843	2843
$\begin{array}{\|l\|} \hline \frac{x}{2} \\ \frac{2}{3} \\ \frac{3}{4} \\ \hline \end{array}$		－1／8	1526	1846	1846	1846	1846	1846	2087	2087	2106	2106	2106	2106
		－1／4		2488	2488	2180	2488	2488	3328	3328	3062	3062	3062	3062
MECHANICAL PROPERTIES														
Yield Strogth， F，Ksi（MPa）			$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \\ \hline \end{gathered}$	$134 \text { ksi }$ $920 \mathrm{Mpa}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \\ \hline \end{gathered}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \\ \hline \end{gathered}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \\ \hline \end{gathered}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \\ \hline \end{gathered}$	$\begin{array}{r} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \\ \hline \end{array}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \\ \hline \end{gathered}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \\ \hline \end{gathered}$	$\begin{aligned} & 134 \mathrm{ksil} \\ & 920 \mathrm{Mpa} \end{aligned}$	134 ksi 920 Mpa	134 ksi 920 Mpa
Tensile Strength F，Ksi（MPa）			$\begin{gathered} 152 \mathrm{ksi} \\ 1054 \mathrm{Mpa} \end{gathered}$	$\begin{gathered} 152 \mathrm{ksi} \\ 1054 \mathrm{Mpa} \\ \hline \end{gathered}$	$\begin{gathered} 152 \mathrm{ksi} \\ 1054 \mathrm{Mpa} \end{gathered}$									

[^0]INSTALLATION GUIDELINES
$>$ way be installed using a standard screw gun with a depth sensitive nosepiece．For optimal fastener performance，the screw gun should be a minimum of 6 amps and have an RPM range of 1800 to 2500 RPM．
$>$ Overdriving may result in torsional failure of the fas－ tener or stripout of the substrate．

[^0]: Buildex
 1349 W．Bryn Mawr Ave．I Itasca，IL． 60143 800－BUILDEX I wwwitwbuildex．com Cimaseal ACR＂and Teks Select ${ }^{10}$ ere trademarks of

