Total Quality. Assured.

omnimax international MIAMI-DADE TEST REPORT

SCOPE OF WORK

MIAMI-DADE PERFORMANCE TEST ON 6 FT HIGH BY 6 FT WIDE KNOTWOOD FENCE SYSTEM

REPORT NUMBER

K0316.01-119-18 RO

TEST DATES

10/16/19-10/22/19

ISSUE DATE
03/17/20

RECORD RETENTION END DATE
10/22/29

MIAMI-DADE COUNTY NOTIFICATION NO.
ATI19046

LABORATORY CERTIFICATION NO.
19-0321.16

PAGES

36

DOCUMENT CONTROL NUMBER
ATI 00637 (07/24/17)
RT-R-AMER-Test-2790
© 2017 INTERTEK

TEST REPORT FOR OMNIMAX INTERNATIONAL
Report No.: K0316.01-119-18 RO
Date: 03/17/20

REPORT ISSUED TO

OMNIMAX INTERNATIONAL
30 Technology Parkway South
Suite 400
PeachTree Corners, GA 30092

SECTION 1
SCOPE

Intertek Building \& Construction (B\&C) was contracted by OmniMax International to perform Miami-Dade performance testing on their 6 ft high by 6 ft wide Knotwood fence system. Results obtained are tested values and were secured by using the designated test methods. Testing was conducted at the Intertek B\&C test facility in York, PA. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory.

2020.03.17 16:54:22-04'00'

For INTERTEK B\&C:

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Total Quality. Assured.

TEST REPORT FOR OMNIMAX INTERNATIONAL
Report No.: K0316.01-119-18 RO
Date: 03/17/20

SECTION 2

TEST METHODS

The specimens were evaluated in accordance with the following:
ASCE 7-10, Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers.

2017 Florida Building Code, Building

SECTION 3

MATERIAL SOURCE

Test samples were provided by the client. Specimens were extruded and powder coated at the ALCAS manufacturing facility in Istanbul, Turkey. Specimens were sublimated at the Knotwood facility in Duluth, GA. Representative samples of the test specimens will be retained by Intertek $B \& C$ for a minimum of ten years from the test completion date.

SECTION 4

EQUIPMENT

The support posts were secured in square steel tube structural frames designed to accommodate anchorage of the specimen and application of the required test loads. The specimen was loaded using dead weights. Deflections were measured with linear displacement transducers accurate to 0.01 inch.

SECTION 5
LIST OF OFFICIAL OBSERVERS

NAME	COMPANY
Robert G. Spayd	Intertek B\&C
Scott T. Gladfelter	Intertek B\&C

TEST REPORT FOR OMNIMAX INTERNATIONAL
Report No.: K0316.01-119-18 RO
Date: 03/17/20

SECTION 6

TEST SPECIMEN DESCRIPTION

SERIES/MODEL	Knotwood
DESCRIPTION	6 ft high by 6 ft wide (per panel section) aluminum privacy fence
PANELS	Twelve, 5/8 in thick by 5-29/32 in wide by 67 in long $6060-\mathrm{T5}$ aluminum panels (0.060 in wall) installed horizontally (per panel section); each panel was attached to a U-channel with four (two at each end, one side only) \#10-16 by 5/8" (0.132 in minor diameter) stainless steel, Philips drive, pancake-head, self-drilling screws
PANEL ATTACHMENT	Two 1-3/16 in square by 68 in long 6060-T5 aluminum "U"-channels (one on each end of the panel); fastened to the post with \#10-16 by $1 " ~(0.134 ~ i n ~ m i n o r ~ d i a m e t e r) ~ s t a i n l e s s ~ s t e e l, ~ h e x-w a s h e r ~ h e a d, ~ s e l f-~$
drilling screws every 12 in	

SECTION 7

INSTALLATION AND TEST PROCEDURES

Three 6 ft high by 6 ft wide Knotwood fence sections were tested according to the following:
The 2-panel/3-post specimens were constructed in the horizontal orientation by securely anchoring each post in a section of square steel tubing to a depth equal to the embedment specified on the product drawings. Steel weights were uniformly placed on top of the plywood to achieve the desired 1.0 times the design load for a period of 30 seconds. Following this duration, additional weights were added to achieve the 1.5 times the design load. This load was held for a period of 24 hours after which time the weights were removed and the permanent set was recorded. Transducers were mounted to the top, middle, and bottom of each panel at the midspan between posts. Deflection was continuously, electronically recorded during the entire duration of the test. Reference photographs in Section 10 for typical test setup.

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 RO
Date: 03/17/20

SECTION 8

TEST CALCULATIONS

OmniMax International has provided Intertek-ATI with calculations from PVE, LLC, a Professional Engineer licensed in the state of Florida specifying the design load (based on Exposure C) to be applied for the gravity load test. Reference Section 11 for design calculations.

SPECIMEN	$\mathbf{1 . 0}$ x DESIGN LOAD (psf)	$\mathbf{1 . 5}$ x DESIGN LOAD (psf)
6 ft. high by 6 ft. wide Fence System	17.5	26.3

SECTION 9

TEST RESULTS

Test No. 1 - Test Date: 10/16/19

DESIGN LOAD	DURATION	MAXIMUM DEFLECTION (inches)		
		$\begin{aligned} & \text { TOP } \\ & \text { Left / Right } \end{aligned}$	MID Left / Right	BOTTOM Left / Right
1.0x	Initial	0.90/0.86	0.68/0.66	0.32/0.31
1.0x	30 sec	0.91/0.86	0.68/0.66	0.32/0.31
1.5x	Initial	1.52/1.45	1.11/1.07	0.58/0.52
1.5x	24 hours	1.60/1.50	1.11/1.08	0.63/0.58
0x	Initial	0.07/0.06	0.05/0.05	0.08/0.05

Observation: Specimen sustained the 1.5x design load for the 24 -hour period

Test No. 2 - Test Date: 10/17/19

| DESIGN LOAD | DURATION | MAXIMUM DEFLECTION (inches) | |
| :--- | :--- | :--- | :--- | :--- |

Observation: Specimen sustained the 1.5x design load for the 24-hour period

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 RO
Date: 03/17/20
Test No. 3 - Test Date: 10/21/19

DESIGN LOAD	DURATION	MAXIMUM DEFLECTION (inches)		
	TOP Left $/$ Right	MID Left / Right	BOTTOM Left / Right	
1.0 x	Initial	$0.97 / 0.91$	$0.69 / 0.63$	$0.35 / 0.34$
1.0 x	30 sec	$0.97 / 0.91$	$0.68 / 0.63$	$0.35 / 0.33$
1.5 x	Initial	$1.58 / 1.52$	$1.13 / 1.05$	$0.58 / 0.52$
1.5 x	24 hours	$1.63 / 1.58$	$1.15 / 1.09$	$0.59 / 0.57$
0 x	Initial	$0.12 / 0.10$	$0.08 / 0.05$	$0.05 / 0.11$

Observation: Specimen sustained the 1.5x design load for the 24-hour period

SECTION 10

PHOTOGRAPHS

Photo No. 1
Typical Gravity Load Specimen in Fixture

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 RO
Date: 03/17/20

Photo No. 2
Gravity Load Specimen with $1.0 \times$ Design Load Applied

Photo No. 3
Gravity Load Specimen with $1.5 \times$ Design Load Applied

TEST REPORT FOR OMNIMAX INTERNATIONAL
Report No.: K0316.01-119-18 RO
Date: 03/17/20

SECTION 11
DESIGN CALCULATIONS

Knotwood 4x4 Fencing

For

Florida Testing

Date Prepared ... November 26, 2019
Prepared for:
Knotwood a Division of OmniMax International, Inc.
30 Technology Pkwy S, Suite 400/Suite 600
Peachtree Corners, GA 30092
Phone...(855) 566-8966

Prepared by:
PVE, LLC
2000 Georgetowne Drive, Suite 101
Sewickley, PA 15143
Phone ... (724) 444-1100

TABLE OF CONTENTS

Page No.
TITLE SHEET 1
TABLE OF CONTENTS 2
DESIGN CODES AND STANDARDS 3
GENERAL NOTES 4
DESIGN LOADS 5
DESIGN CALCULATIONS 9
APPENDIX 'A' (REFERENCES)

DESIGN CODES AND STANDARDS

The following codes and standards, including all specifications referenced within, apply to the design and construction of this project:

- IBC, INTERNATIONAL BUILDING CODE - 2015
- FBC, FLORIDA BUILDING CODE - 2017
- ASCE 7-10, MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES
- ADM, ALUMINUM DESIGN MANUAL - 2010

GENERAL NOTES

1. Contractor to verify all dimensions in the field prior to installation. Do not scale off drawings.
2. All members shall be saw cut in field as required.
3. No splices shall be permitted unless indicated otherwise on the drawings.
4. Touch up all scratches with dealer provided colors to match.
5. Welding is not permitted, unless otherwise indicated on the drawings.
6. The contents show the application of aluminum Knotwood framing components only. The installing contractor is to refer to the project documents for additional requirements.
7. Dimensions herein are for engineering purposes only and must be reviewed for the purpose of approval. All conditions are subject to approval and to field verification prior to fabrication or installation.
8. Before ordering, fabricating or erecting any material, make any necessary surveys and measurements to verify that in place work has been built according to the contract documents and are within acceptable tolerances. This includes the original buildings and all additions thereto. Notify the Architect/Engineer and owner's representatives of any discrepancies prior to construction.
9. Temporary bracing of the system and safety during construction is solely the responsibility of the contractor. Temporary bracing of the system shall remain in place until the system is totally in place. Contractor shall coordinate locations of temporary bracing with other contractors. Refer to drawings for additional criteria.
10. This submittal is subject to the review and approval of the project Architect/Engineer of record prior to installation.

STRUCTURAL CALCULATIONS

FOR
Florida Testing - 4X4 Fencing

Florida

PVE LLC

2000 Georgetowne Drive, Suite 101
Sewickley, PA 15143-8992
jOB NO. \qquad SHEET NO.
CALCULATED BY DSG DATE $11 / 26 / 19$
CHECKED BY JU
DATE
www.struware.com

Code Search

Code: Florida Building Code 2017

Occupancy:
Occupancy Group =
R Residential

Risk Category \& Importance Factors:

Risk Category $=$	$\quad \mid$
Wind factor $=$	1.00
Snow factor $=$	0.80
Seismic factor $=$	1.00

Type of Construction:
Fire Rating:

$$
\begin{array}{ll}
\text { Roof }= & 0.0 \mathrm{hr} \\
\text { Floor }= & 0.0 \mathrm{hr}
\end{array}
$$

Building Geometry:

Roof angle (θ)	$1.00 / 12$	4.8 deg
Building length (L)	24.0 ft	
Least width (B)	24.0 ft	
Mean Roof Ht (h)	6.0 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

Roof $\quad 0$ to $200 \mathrm{sf}: 20 \mathrm{psf}$
200 to 600 sf: $24-0.02$ Area, but not less than 12 psf over 600 sf: 12 psf

Floor:

Typical Floor		N/A
Partitions		N/A
Partitions	N/A	
Partitions		N/A
Partitions	N/A	

jOB No.
calculated by DSG
DATE $11 / 26 / 19$
DATE 11/26/19

Wind Loads:

Ultimate Wind Speed	115 mph
Nominal Wind Speed	89.1 mph
Risk Category	1
Exposure Category	C
Enclosure Classif.	Open Building
Internal pressure	$+/-0.00$
Directionality (Kd)	0.85
Kh case 1	0.849
Kh case 2	0.849
Type of roof	Monoslope

Topographic Factor (Kzt)		
Topography		
Hill Height (H)	0.0 ft	
Half Hill Length (Lh)		0.0 ft
Actual H/Lh	$=$	0.00
Use H/Lh $=$	0.00	
Modified Lh $=$	0.0 ft	
From top of crest: $\mathrm{x}=$	0.0 ft	
Bldg up/down wind?	downwind	

ESCARPMENT

$$
\begin{array}{ll}
\mathrm{H} / \mathrm{Lh}=0.00 & \mathrm{~K}_{1}=0.000 \\
x / L h=0.00 & \mathrm{~K}_{2}=0.000 \\
\mathrm{z} / \mathrm{Lh}=0.00 & \mathrm{~K}_{3}=1.000
\end{array}
$$

At Mean Roof Ht:

$$
\mathrm{Kzt}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{\wedge} 2=1.00
$$

H<15ft;exp C
$\therefore \mathrm{Kzt}=1.0$

2D RIDGE or 3D AXISYMMETRICAL HILL

Gust Effect Factor

$\mathrm{h}=$	6.0 ft	
B	$=$	
$\mathrm{Z}(0.6 \mathrm{~h})$	$=$	
	15.0 ft	

Flexible structure if natural frequency $<1 \mathrm{~Hz}$ ($T>1$ second). If building $\mathrm{h} / \mathrm{B}>4$ then may be flexible and should be investigated.

$$
\mathrm{h} / \mathrm{B}=0.25 \quad \text { Rigid structure (low rise bldg) }
$$

G =
0.85 Using rigid structure default

Flexible or Dynamically Sensitive Structure
34 lcy $\left(\eta_{1}\right)=0.0 \mathrm{~Hz}$
Damping ratio $(\beta)=0$
$/ b=0.65$
$/ \alpha=\quad 0.15$
Vz = $\quad 97.1$
$\mathrm{N}_{1}=0.00$
$\mathrm{K}_{\mathrm{n}}=0.000$
$R_{h}=28.282 \quad \eta=0.000 \quad h=\quad 6.0 \mathrm{ft}$
$R_{B}=28.282 \quad \eta=0.000$
$R_{L}=28.282 \quad \eta=0.000$
$g_{R}=0.000$
$\mathrm{R}=0.000$
Gf = 0.000

Wind Loads - Other Structures: ASCE 7-10
Ultimate Wind Pressures

Wind Factor $=$	1.00		
Gust Effect Factor (G)	$=$	0.85 Ultimate Wind Speed $=$	115 mph
Kzt	$=$	1.00	Exposure $=$

A. Solid Freestanding Walls \& Solid Signs (\& open signs with less than 30% open)

		$\mathrm{s} / \mathrm{h}=$	1.00	Case A \& B		
Dist to sign top (h)	6.0 ft	$\mathrm{B} / \mathrm{s}=$	2.00		C_{f}	1.40
Height (s)	6.0 ft	Lr/s =	0.00	$\mathrm{F}=\mathrm{qz} \mathrm{G} \mathrm{Cf} \mathrm{As}=$		29.1 As
Width (B)	12.0 ft	Kz =	0.849	$\mathrm{As}=\quad 36.0 \mathrm{sf}$		
Wall Return (Lr) =		$q z=$	24.4 psf	F		1047 lbs
Directionality (Kd)	0.85					
Percent of open area to gross area	Open reduction			CaseC		
	0.0\%	factor $=$	1.00	Horiz dist from windward edge	Cf	$\mathrm{F}=\mathrm{qzGCfAs}(\mathrm{psf})$
		ction fac		0 to s	1.80	37.4 As
		>0.8 =	0.80	s to 2s	1.20	24.9 As
		actor $0 \text { to } s=$	1.00			

B. Open Signs \& Lattice Frameworks (openings 30\% or more of gross area)

Height to centroid of Af (z)	0.0 ft			Kz =	0.849
				Base pressure (qz) =	24.4 psf
Width (zero if round)	0.0 ft				
Diameter (zero if rect)	0.0 ft			$\mathrm{F}=\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{f}} \mathrm{A}_{\mathrm{f}}=$	33.2 Af
Percent of open area		1 =	0.65	Solid Area: $\mathrm{A}_{\mathrm{f}}=$	0.0 sf
to gross area	35.0\%	$\mathrm{C}_{\mathrm{f}}=$	1.6	$F=$	0 lbs
Directionality (Kd)	0.85				

C. Chimneys, Tanks, Rooftop Equipment ($\mathrm{h}>6 \mathbf{0}^{\prime}$) \& Similar Structures

Height to centroid of Af (z)	0.0 ft
Cross-Section	Square
Directionality (Kd)	0.90
Height (h)	0.0 ft
Width (D)	0.0 ft
Type of Surface	N/A

$\frac{\text { Square (wind along diagonal) }}{\mathrm{Cf}=\frac{1.0}{}}$
$\mathrm{F}=\mathrm{qz} \mathrm{G} \mathrm{Cf} \mathrm{Af}=\quad$ 22.0 Af
$\mathrm{Af}=\quad \mathrm{sf}$
$\mathrm{F}=\quad 0 \mathrm{lbs}$

$\mathrm{Kz}=$	0.849
Base pressure $(\mathrm{qz})=$	25.9 psf
$\mathrm{h} / \mathrm{D}=1.00$	

h/D $=1.00$

D. Trussed Towers

Height to centroid of Af (z)	0.0 ft	Kz =	0.849
$\epsilon=$		Base pressure (qz) =	27.3 psf
Tower Cross Section triangle			
Member Shape	flat	Diagonal wind factor $=$	1
Directionality (Kd)	0.95	Round member factor $=$	1.000
		$\frac{\text { Triangular Cross Section }}{\mathrm{C}_{\mathrm{C}}=}$	
		$\mathrm{F}=\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{f}} \mathrm{A}_{\mathrm{f}}=$	55.2 Af
		Solid Area: $\mathrm{A}_{\mathrm{f}}=$	0.0 sf
			1 lbs

Knotwood ${ }^{\text {TM }}$ Design Calculation:

Methodology:

When checking Knotwood ${ }^{\text {TM }}$ Fencing (slats, posts, etc.), the applied loads, generated from ASCE 7-10, are compared to allowable tension and shear strengths per the Aluminum Design Manual.

Per ASCE 7-10, the fencing is considered a "Solid Freestanding Wall". The fencing posts are considered to be the "screen enclosure support frame". A uniform live load of 5 psf and a concentrated load of 200 lbs is applied directly to frame members. For wind loading the fence is considered to be an "Other Structure - Solid Freestanding Wall".

Miscellaneous:

The drawings and models shown within the calculation sheets are not meant to be used for fabrication nor performing work. During the design process, elements change, and we do not change the CAD drawings in this booklet. They are for illustrative purposes only to assist in the preparation of the calculations and may not accurately represent the actual work to be performed. The contractor shall refer to the actual drawings to perform all their work.

Fastener Requirements:

Self-Tapping Metal Screws - \#10 Minimum.
Galvanized Unless Noted Otherwise
Aluminum Where Noted At High/Salt Exposure

Materials Requirements:

Knotwood Battens:

Aluminum Alloy 6063-T6:	Fy=25 ksi (MIN)	$\mathrm{Fu}=30 \mathrm{ksi}$ (MIN)
Aluminum Alloy 6061-T6:	$\mathrm{Fy}=35 \mathrm{ksi}(\mathrm{MIN})$	$\mathrm{Fu}=38 \mathrm{ksi}(\mathrm{MIN})$
Aluminum Alloy 6060-T5:	$\mathrm{Fy}=16 \mathrm{ksi}$ (MIN)	$\mathrm{Fu}=22 \mathrm{ksi}$ (MIN)

All Aluminum Welds:

$$
5556 \text { Electrode: } \quad \mathrm{Fu}=46 \mathrm{ksi}
$$

Material Allowable Stress:

Per the ADM Tables 2-19 to 2-21:
Bending Stress:

$$
F_{a b 6061}:=19.5 \mathrm{ksi} \quad F_{a b 6063}:=15.2 \mathrm{ksi} \quad F_{a b 6060}:=5.2 \mathrm{ksi}
$$

Shear Stress:

$$
\begin{array}{lll}
S_{1}:=\frac{(5.91-2(0.059))}{0.059}=98.17 & \text { Use: } & F_{a v S 150}:=\frac{38665}{S_{1}^{2}} k s i=4.01 \mathrm{ksi} \\
S_{2}:=\frac{(3.94-2(0.118))}{0.118}=31.39 & \text { Use: } & F_{a v 4 x 4}:=16.5 \mathrm{ksi}-0.107 \mathrm{ksi} \cdot S_{2}=13.14 \mathrm{ksi}
\end{array}
$$

Modulus of Elasticity:
$E:=10100 \mathrm{ksi}$

Material Section Properties:

Section Properties:
4 x 4 Post:

$$
\begin{aligned}
& I_{x 100100}:=1822940 \mathrm{~mm}^{4}(\text { Ixx per Knotwood Techfiles }) \\
& y_{x 100100}:=50 \mathrm{~mm} \\
& S_{x 100100}:=\frac{I_{x 100100}}{y_{x 100100}}=\left(3.65 \cdot 10^{4}\right) \mathrm{mm}^{3} \\
& S_{x 100100}=2.22 \mathrm{in}^{3} \\
& I_{y 100100}:=1822940 \mathrm{~mm}^{4}(\text { Iyy per Knotwood Techfiles }) \\
& y_{y 100100}:=50 \mathrm{~mm} \\
& S_{y 100100}:=\frac{I_{y 100100}}{y_{y 100100}}=\left(3.65 \cdot 10^{4}\right) \mathrm{mm}^{3} \\
& S_{y 100100}=2.22 \mathrm{in}^{3}
\end{aligned}
$$

CALCULATED ON NOMINAL WALL THICKNESS
$\mid \mathrm{lxx}=1822.94 \times 10 \mathrm{EX} \mathrm{mmE4}$
$\mathrm{lyy}=1822.94 \times 10 \mathrm{EE} 3 \mathrm{mmE} 4$

6" Wide Slat:

$$
\begin{aligned}
& I_{x S 150}:=24500 \mathrm{~mm}^{4} \quad(\text { Ixx per Knotwood Techfiles }) \\
& y_{x S 150}:=8 \mathrm{~mm} \\
& S_{x S 150}:=\frac{I_{x S 150}}{y_{x S 150}}=\left(3.06 \cdot 10^{3}\right) \mathrm{mm}^{3} \\
& S_{x S 150}=0.19 \mathrm{in}^{3} \\
& I_{y S 150}:=1050490 \mathrm{~mm}^{4} \quad(\text { Iyy per Knotwood Techfiles }) \\
& y_{y S 150}:=125 \mathrm{~mm} \\
& S_{y S 150}:=\frac{I_{y S 150}}{y_{y S 150}}=\left(8.40 \cdot 10^{3}\right) \mathrm{mm}^{3} \\
& S_{y S 150}=0.51 \mathrm{in}^{3}
\end{aligned}
$$

Load Requirements:

Dead Load:

$D L_{\text {selff } 1 W 6525}:=0.960 \frac{\mathrm{kgf}}{\mathrm{m}}=0.65 \mathrm{plf}$
$D L_{\text {selfi00100 }}:=3.138 \frac{\mathrm{kgf}}{\mathrm{m}}=2.11 \mathrm{plf}$
$D L_{\text {sel/SI } 5016}:=1.411 \frac{\mathrm{kgf}}{\mathrm{m}}=0.95 \mathrm{plf}$
$D L_{\text {selfGFS }}:=1.227 \frac{\mathrm{kgf}}{\mathrm{m}}=0.82 \mathrm{plf}$
$D L_{\text {self2W6565 }}:=2.557 \frac{\mathrm{kgf}}{\mathrm{m}}=1.72 \mathrm{plf}$
$D L_{\text {self2C6565 }}:=2.035 \frac{\mathrm{kgf}}{\mathrm{m}}=1.37 \mathrm{plf}$
Live Loads:
$w_{L L}:=5 \mathrm{psf}$
$P_{\text {req }}:=200 \mathrm{lbf}$
Wind Loads:

$$
\begin{aligned}
& w_{\text {Wind }}:=29.1 \mathrm{psf} \\
& w_{\text {WindNominal }}:=0.6 \cdot w_{\text {Wind }}=17.46 \mathrm{psf} \\
& w_{\text {WindSIS016 }}:=6 \mathrm{in} \cdot w_{\text {Wind }}=14.55 \mathrm{plf}
\end{aligned}
$$

(Self weight of 1 way post per linear foot)
(Self weight of 4" post per linear foot)
(Self weight of 6 " slat per linear foot)
(Self weight of small gate frame per linear foot)
(Self weight of 2 way post per linear foot)
(Self weight of corner post per linear foot)
(Dist. Load)
(Point Load)
(Maximum Ultimate Design Wind Loading - 115 mph wind per Florida Building Code 1616.2.1)
(Nominal Design Wind Loading)

Figure 1 - Typical Fencing Plan View

Figure 2-Typical Fencing Elevation View

Check 6" Slats:

$d:=68$ in (Max span considered) $\quad h:=6$ in \quad (Tributary width on Slat)
Loading:
$D L_{\text {Total }}:=D L_{\text {selfS15016 }}=0.95 \mathrm{plf}$
$w_{\text {WLTotal }}:=w_{\text {WindSI5016 }}=14.55 \mathrm{plf}$
$w_{\text {LLTotal }}:=w_{L L} \cdot h=2.50 \mathrm{plf}$
$P_{\text {reqinfill }}:=50 \mathrm{lbf} \quad$ (Considering infill guardrail loading for fence slats)
Max forces considering slat "pinned"
DL+LL Load Case (Considering LL perpendicular to flat face, so dead load does not cause bending):
$M_{\text {Dist } 1}:=\frac{w_{L L T o t a l} \cdot d^{2}}{8}=0.01 \mathrm{kip} \cdot \boldsymbol{f t}$
$V_{\text {Dist } 1}:=\frac{w_{\text {LLTotal }} \cdot d}{2}=7.08 \mathrm{lbf}$
$M_{\text {Point } 1}:=\frac{P_{\text {reqinfill }} \cdot d}{4}=0.07 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Pointl }}:=P_{\text {reqinfill }}+\frac{D L_{\text {Total }} \cdot d}{2}=52.69 \mathrm{lbf}$
DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):
$M_{\text {Dist } 2}:=\frac{0.6 w_{\text {WLTotal }} \cdot d^{2}}{8}=0.04 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Dist } 2}:=\frac{0.6 w_{\text {WLTotal }} \cdot d}{2}+\frac{D L_{\text {Total }} \cdot d}{2}=27.42 \mathrm{lbf}$
$M_{\text {Point } 2}:=0$ kip $\cdot f t \quad$ N/A for this load case
$V_{\text {Point } 2}:=0$ kip N/A for this load case

DL+0.75LL+0.45WL Load Case:
$M_{\text {Dist } 3}:=\frac{\left(0.75 w_{\text {LLTotal }}+0.45 w_{\text {WLTotal }}\right) \cdot d^{2}}{8}=0.03 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Dist } 3}:=\frac{\left(0.75 \cdot w_{\text {LLTotal }}+0.45 \cdot w_{\text {WLTotal }}\right) \cdot d}{2}=23.86 \mathrm{lbf}$
$M_{\text {Point } 3}:=\frac{0.45 w_{\text {WLTotal }} \cdot d^{2}}{8}+\frac{0.75 P_{\text {reqinfill }} \cdot d}{4}=0.08 \mathrm{kip} \cdot \mathrm{ft} \quad \leftarrow$ Governs
$V_{\text {Point } 3}:=\frac{D L_{\text {Total }} \cdot d}{2}+0.75 P_{\text {reqinfill }}+\frac{0.45 \cdot w_{\text {WLTotal }} \cdot d}{2}=58.74 \mathrm{lbf}$

$$
\begin{aligned}
& M_{M A X}=0.08 \mathrm{kip} \cdot \mathrm{ft} \\
& V_{M A X}=58.74 \mathrm{lbf}
\end{aligned}
$$

Check Slat Bending:

$$
f_{b S I 50}:=\frac{M_{M A X}}{S_{x S 150}}=5.10 \mathrm{ksi} \quad<F_{\text {abb060 }}=5.20 \mathrm{ksi} \quad \therefore \text { OK }
$$

Check Slat Shear:

$$
\begin{aligned}
& A_{S I 50}:=2 \cdot 147 \mathrm{~mm} \cdot 1.5 \mathrm{~mm}=0.68 \mathrm{in}^{2} \\
& f_{v S I 50}:=\frac{V_{M A X}}{A_{S I 50}}=0.09 \mathrm{ksi} \quad<F_{\text {avSI50 }}=4.01 \mathrm{ksi} \quad \therefore \mathrm{OK}
\end{aligned}
$$

Therefore, use of KES15016 is Acceptable

Check Slat Fasteners:

Allowable Connection Shear:
The allowable connection shear is determined according to Section J.5.6, which specifies a safety factor $\Omega=3.0$ for fastener connection shear for building-type structures.

$$
\begin{array}{ll}
\Omega:=3.0 & \text { (ASD building-type structures) } \\
D:=0.19 \text { in } & \text { (\#10 Fastener Diameter) } \\
t_{1}:=0.059 \text { in } & \text { (Slat Thickness) } \\
t_{2}:=0.079 \text { in } & \text { (Slat Support Thickness) }
\end{array}
$$

Section J.5.6.1 addresses bearing. Since the edge distance is $0.5 \mathrm{in} .>0.38 \mathrm{in} .=2(0.19 \mathrm{in})=.2 \mathrm{D}$, the allowable bearing force is $2 \mathrm{FtuDt} / \mathrm{W}$. Using Ftu from Table A.3.4, the allowable shear for bearing is:

$$
F_{t u}:=22 \text { ksi } \quad \text { (Table A.3.4) }
$$

$$
F_{\text {bearing }}:=\frac{2 \cdot F_{t u} \cdot D \cdot t_{1}}{\Omega}=164.41 \mathrm{lbf} \quad>\quad \frac{V_{M A X}}{2}=29 \mathrm{lbf} \quad \therefore \mathrm{OK}
$$

Fastener Pull Over:

For $t_{2}>t_{1}$, Pull Over is not a limit state.

Fastener Shear:

$$
\begin{aligned}
& F_{v u}:=1.15 \mathrm{kip} \quad \quad \text { \#10 Ultimate Shear) } \\
& F_{\text {shear }}:=\frac{F_{v u}}{\Omega}=383.33 \mathrm{lbf} \quad>\quad \frac{V_{M A X}}{2}=29 \mathrm{lbf} \therefore \text { OK }
\end{aligned}
$$

Fastener Tension:

Nominal Pullout (ADM J.5.5, $0.060 \mathrm{in} \llbracket \leq \llbracket \mathrm{Le} \llbracket \leq \llbracket 0.125 \mathrm{in})$

$$
\begin{array}{ll}
K_{s}:=1.01 & \text { ADM J.5.5.1.1 } \\
D=0.19 \mathrm{in} & \text { Nominal diameter of screw } \\
F_{t y 2}:=30 \mathrm{ksi} & \text { Tensile yield strength of member not in contact with screw head } \\
L_{e}:=t_{2}=0.08 \mathrm{in} & \text { Screw engaged length } \\
R_{n}:=K_{s} \cdot D \cdot L_{e} \cdot F_{t y 2}=454.80 \mathrm{lbf} \quad \quad \text { (\#10 Ultimate Pullout - ADM J.5-1) } \\
F_{\text {pullout }}:=\frac{R_{n}}{\Omega}=151.60 \mathrm{lbf} \quad>\frac{V_{M A X}}{2}=29 \mathrm{lbf} \quad \therefore \mathrm{OK}
\end{array}
$$

Therefore, use of \#10 Screw is acceptable

Check Posts :

$$
\begin{array}{ll}
d:=6 f t \quad h:=6 f t & \text { Tributary width on post } \\
D L_{\text {Total }}:=\frac{12 D L_{\text {selfs } 15016} \cdot h}{d}+D L_{\text {selff100100 }}+2 \cdot D L_{\text {self } 1 W 6525}=14.78 \text { plf } & \text { Total dead load on post } \\
w_{\text {WLTotal }}:=w_{\text {Wind }} \cdot h=174.60 \text { plf } & \\
w_{\text {LLTotal }}:=w_{L L} \cdot h=30.00 \text { plf } &
\end{array}
$$

$$
P_{r e q}=200.00 \mathrm{lbf}
$$

Max forces considering post cantilevered
DL+LL Load Case (Considering LL perpendicular to flat face, so dead load does not cause bending):
$M_{\text {Dist } 1}:=\frac{w_{\text {LLTotal }} \cdot d^{2}}{2}=0.54 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Dist } 1}:=w_{\text {LLTotal }} \cdot d=180.00 \mathrm{lbf}$
$M_{\text {Point } 1}:=P_{\text {req }} \cdot d=1.20$ kip $\cdot f t \quad \leftarrow$ Governs
$V_{\text {Point } 1}:=P_{\text {req }}+D L_{\text {Total }} \cdot d=288.66 \mathrm{lbf}$

DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):
$M_{\text {Dist } 2}:=\frac{0.6 w_{\text {WLTotal }} \cdot d^{2}}{2}=1.89 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Dist } 2}:=0.6 w_{\text {WLTotal }} \cdot d+D L_{\text {Total }} \cdot d=717.22 \mathrm{lbf}$
$M_{\text {Point } 2}:=0$ kip $\cdot f t \quad$ N/A for this load case
$V_{\text {Point } 2}:=0$ kip N/A for this load case

DL+0.75LL+0.45WL Load Case:
$M_{\text {Dist } 3}:=\frac{\left(0.75 w_{\text {LLTotal }}+0.45 w_{\text {WLTotal }}\right) \cdot d^{2}}{2}=1.82 \mathrm{kip} \cdot \mathrm{ft}$
$V_{\text {Dist } 3}:=\left(0.75 \cdot w_{\text {LLTotal }}+0.45 \cdot w_{\text {WLTotal }}\right) \cdot d=606.42 \mathrm{lbf}$
$M_{\text {Point } 3}:=\frac{0.45 w_{\text {WLTotal }} \cdot d^{2}}{2}+0.75 P_{\text {req }} \cdot d=2.31 \mathrm{kip} \cdot f t$
$V_{\text {Point } 3}:=D L_{\text {Total }} \cdot d+0.75 P_{\text {req }}+0.45 \cdot w_{\text {WLTotal }} \cdot d=710.08 \mathrm{lbf}$

$$
\begin{aligned}
& M_{M A X 2}=2.31 \mathrm{kip} \cdot \mathrm{ft} \\
& V_{M A X 2}=717.22 \mathrm{lbf}
\end{aligned}
$$

Check Post Bending:

$$
F_{\text {cr0063post65 }}:=\frac{M_{M A X 2}}{S_{y 100100}}=12.48 \mathrm{ksi}<F_{\text {ab6061 }}=19.50 \mathrm{ksi} \therefore \mathrm{OK} \quad 4 \times 4 \text { Post Maximum }
$$

Check Post Shear:

$$
\begin{aligned}
& A_{P 4 x 4}:=2 \cdot 3.58 \mathrm{in} \cdot 0.118 \mathrm{in}=0.84 \mathrm{in}^{2} \quad(\text { Web Area }) \\
& F_{v p o s t}:=\frac{V_{M A X 2}}{A_{P 4 x 4}}=0.85 \mathrm{ksi} \quad<F_{a v v x 4}=13.14 \mathrm{ksi} \quad \therefore \mathrm{OK}
\end{aligned}
$$

APPENDIX 'A'
(References)

Section 1616.2 from the 2017 Florida Building Code:

1616.2 General design for specific occupancies and structures.
1616.2.1 Fences.

Fences not exceeding 6 feet (1829 mm) in height from grade may be designed for $75 \mathrm{mph}(33 \mathrm{~m} / \mathrm{s}$) fastest mile wind speed or $115 \mathrm{mph}(40 \mathrm{~m} / \mathrm{s}) 3$ second gust
1616.2.1.1 Wood fences.

Wood fence design shall be as specified by Section 2328 .
1616.2.2 Sway forces in stadiums.

1. The sway force applied to seats in stadiums, grandstands, bleachers and reviewing stands shall be not less than 24 pounds per lineal foot ($350 \mathrm{~N} / \mathrm{m}$), applied perpendicularly and along the seats.
2. Sway forces shall be applied simultaneously with gravity loads.
3. Sway forces need not be applied simultaneously with other lateral forces.
1616.3 Deflection.
1616.3.1 Allowable deflections.

The deflection of any structural member or component when subjected to live, wind and other superimposed loads set forth herein shall not exceed the following:

1. Roof and ceiling or components supporting plaster

SELECTOR GUIDE \＆PERFORMANCE DATA

Part Number			1076000	1112000	1080000	1132000	1114000	1117000	1119000	1121000	1124000	1125000	1078000	1126000
Description			10－16x3／4＂	12－14x7／8＂	12－14x1＂	12－14x1＂	12－14x1－1／2＂	12－14x2＂	1／4－14x1＂	1／4－14x1－1／2＂	1／4－20x1－1／8＂	1／4－20x1－1／2＂	1／4－20x2＂	1／4－20x2－1／2＂
Head Style			HWH	HWH	HWH	UPFH＊＊＊	HWH							
Drill Point			3	3	3	3	3	3	3	3	4	4	4	4
Drilling Cap			． 150 ＂	．187＂	．187＂	．187＂	．187＂	．187＂	．210＂	．210＂	． $210^{\prime \prime}-.312^{\prime \prime}$	． $210^{\prime \prime}-.312^{\prime \prime}$	． $210^{\prime \prime}$－ $.312^{\prime \prime}$	． $210^{\prime \prime}$－ $.312^{\prime \prime}$
Max Load Bearing Area＊													$1.330^{\prime \prime}$	
Installation Tool			5／16＂Driv－ Tru ${ }^{\text {tw＂}}$ Socket （P／N：1513910）	5／16＂Driv－ Tru ${ }^{\text {ted }}$ Socket （P／N：1513910）	5／16＂Driv－ Tru ${ }^{\text {tiw }}$ Socket （P／N：1513910）	$\begin{aligned} & \text { \#3 Phillips } \\ & \text { Bit } \end{aligned}$	5／16＂Driv－ Tru ${ }^{\text {t＂I }}$ Socket （P／N：1513910）	5／16＂Driv－ Tru ${ }^{\text {tu }}$ Socket （P／N：1513910）	3／8＂Driv－ Tru＂Socket （PN：1574910）	3／8＂Driv－ Tru＂Socket （P／N：1574910）	3／8＂Driv－ Tru＂Socket （P／N：1574910）	$\begin{gathered} \text { 3/8" Driv- } \\ \text { Tru" Socket } \\ \text { (P/N: 1574910) } \end{gathered}$	3／8＂Driv－ Tru Socket （P／N：1574910）	3／8＂Driv－ Tru＂Socket （P／N：1574910）
PULLOUT VALUES（AVERAGE LBS．ULTIMATE）														
		ksi												
	18	45.5	401	400	400	400	400	400	475	475				
	16	63	699	561	561	561	561	561	631	631	827	827	827	827
	14	55.5	1010	964	964	964	964	964	1062	1062	1258	1258	1258	1258
	12	63	1680	1516	1516	1516	1516	1516	1878	1878	1946	1946	1946	1946
	1／8	56.9	2183	2149	2149	2149	2149	2149	2320	2320	2685	2685	2685	2685
	3／16	65.3		2877	2877	2497	2877	2877	3668	3668	3572	3572	3572	3572
	1／4	48.1									4719	4719	4719	4719
	5／16	49.1									4699	4699	4699	4699
	$1 / 8$	32.4	745	1008	1008	1008	1008	1008	1017	1017	970	970	970	970
	1／4	32.1		2543	2543	2462	2543	2543	3080	3080	2760	2760	2760	2760
	3／8	27.7									3851	3851	3851	3851
SHEAR VALUES（AVERAGE LBS．ULTIMATE）														
苞苞岂岕	18		996	965	965	965	965	965	1100	1100	1026	1026	1026	1026
	18－1		1872	1803	1803	1803	1803	1803	2132	2132	2089	2089	2089	2089
	16－		1331	1360	1360	1360	1360	1360	1414	1414	1359	1359	1359	1359
	14－1			1815	1815	1815	1815	1815	2439	2439	2357	2357	2357	2357
	1／8－3	3／16							2636	2636	2748	2748	2748	2748
	3／16	－1／4									2881	2881	2881	2881
	12－1										2843	2843	2843	2843
	1／8－		1526	1846	1846	1846	1846	1846	2087	2087	2106	2106	2106	2106
	1／8－			2488	2488	2180	2488	2488	3328	3328	3062	3062	3062	3062
MECHANICAL PROPERTIES														
Yield Stregth， $\mathrm{F}_{\mathrm{y}} \mathrm{Ksi}$（MPa）			$134 \text { ksi }$ $920 \text { Mpa }$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \end{gathered}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \end{gathered}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \\ \hline \end{gathered}$	$\begin{aligned} & 134 \mathrm{ksi} \\ & 920 \mathrm{Mpa} \end{aligned}$	$\begin{aligned} & 134 \mathrm{ksi} \\ & 920 \mathrm{Mpa} \end{aligned}$	$\begin{aligned} & 134 \mathrm{ksi} \\ & 920 \mathrm{Mpa} \end{aligned}$	$134 \text { ksi }$ $920 \text { Mpa }$	$134 \text { ksi }$ $920 \mathrm{Mpa}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \end{gathered}$	$\begin{gathered} 134 \mathrm{ksi} \\ 920 \mathrm{Mpa} \end{gathered}$	$134 \text { ksi }$ $920 \text { Mpa }$
Tensile Strength $\mathrm{F}_{\mathrm{u}} \mathrm{Ksi}$（MPa）			$\begin{gathered} 152 \mathrm{ksi} \\ 1054 \mathrm{Mpa} \end{gathered}$	$\begin{aligned} & 152 \mathrm{ksi} \\ & 1054 \mathrm{Mpa} \end{aligned}$	$\begin{gathered} 152 \mathrm{ksi} \\ 1054 \mathrm{Mpa} \end{gathered}$	152 ksi 1054 Mpa	$\begin{gathered} 152 \mathrm{ksi} \\ 1054 \mathrm{Mpa} \end{gathered}$	$\begin{aligned} & 152 \mathrm{ksi} \\ & 1054 \mathrm{Mpa} \end{aligned}$	$\begin{aligned} & 152 \mathrm{ksi} \\ & 1054 \mathrm{Mpa} \end{aligned}$	$\begin{gathered} 152 \mathrm{ksi} \\ 1054 \mathrm{Mpa} \end{gathered}$				

＊IMPORTANT：Maximum load bearing area is indicated by brackets．
＊＊＊Undercut Phillips Flat Head
${ }^{* *}$ KSI values are the same as listed in the Pullout Values table．

Tekss，Teks Select and Climaseal ACR＂are trademarks of ITW Buildex and Illinois Tool Works，Inc．

Table 2-19
ALLOWABLE STRESSES FOR BUILDING-TYPE STRUCTURES (UNWELDED)

Allowable Stresses F/ Ω ($\mathbf{k} / \mathrm{in}^{2}$)	Section	F / Ω	6061 - T6, T6510, T6511	Extrusions
Axial Tension			6061 - T6	Pipe
axial tension stress on net	D.2b	19.5	6351-T5	Extrusions
effective area			$F_{t y}=35 \mathrm{k} / \mathrm{in}^{2}$	$E=10,100 \mathrm{k} / \mathrm{in}^{2}$
axial tension stress on gross area	D.2a	21.2	$\begin{aligned} & F_{c y}=35 \mathrm{k} / \mathrm{in}^{2} \\ & F_{t u}=38 \mathrm{k} / \mathrm{in}^{2} \end{aligned}$	$k_{t}=1$
Flexure		Tension	Compression	
elements in uniform stress	F.8.1.1	19.5	see B.5.4.1 thru B.5.4.5 and E.4.2	
elements in flexure	F.8.1.2, F.4.1	27.6	27.6 see also F.4.2	
round tubes	F.6.1	24.2	24.8 see also F.6.2	
rods	F. 7	27.6	27.6	
Bearing				
bolts or rivets on holes	J.3.7a, J.4.7	39.0		
bolts on slots, pins on holes,	J.3.7b, J. 7	25.9		

ALLOWABLE STRESSES FOR BUILDING-TYPE STRUCTURES (UNWELDED)

Allowable Stresses $\boldsymbol{F} / \boldsymbol{\Omega}\left(\mathbf{k} / \mathbf{i n}^{2}\right)$	Section	$\boldsymbol{F} / \boldsymbol{\Omega}$
Axial Tension		
axial tension stress on net effective area	D.2b	11.3
axial tension stress on gross area	D.2a	9.7

$\mathbf{6 0 6 3 - T 5}$	Extrusions (Up
$\mathbf{6 0 6 3 - \text { T52 }}$	Extrusions (Up
$F_{t y}=16 \mathrm{~K} / \mathrm{in}^{2}$	$E=10,100 \mathrm{k} / \mathrm{in}^{2}$
$F_{c y}=16 \mathrm{k} \mathrm{in}^{2}$	$k_{t}=1$
$F_{t u}=22 \mathrm{Kin}^{2}$	

6063 -T5
6063 -T52
$F_{t y}=16 \mathrm{k} / \mathrm{in}^{2}$
$F_{c y}=16 \mathrm{k} / \mathrm{in}^{2}$
$F_{t u}=22 \mathrm{k} / \mathrm{in}^{2}$

Extrusions (Up thru 0.500 in. thick)
Extrusions (Up thru 1.000 in. thick)
$k_{t}=1$

		Tension	Compression	
Flexure		9.7	see B.5.4.1 thru B.5.4.5 and E.4.2	
elements in uniform stress	F.8.1.1	12.6	12.6	
elements in flexure	F.8.1.2, F.4.1	see also F.4.2		
round tubes	F.6.1	11.3	11.3	
ree also F.6.2				
rods	F.7	12.6	12.6	
Bearing				
bolts or rivets on holes	J.3.7a, J.4.7	22.6		
bolts on slots, pins on holes,	J.3.7b, J.7	15.0		

ALLOWABLE STRESSES FOR BUILDING-TYPE STRUCTURES (UNWELDED)

Allowable Stresses F/ $\mathbf{(k / k i n}{ }^{2}$)	Section	F / Ω	6063 - T6	Extrusions and Pipe
Axial Tension			$F_{t y}=25 \mathrm{k} / \mathrm{in}^{2}$	$E=10,100 \mathrm{k} / \mathrm{in}^{2}$
axial tension stress on net effective area	D. 2 b	15.4	$\begin{aligned} F_{c y} & =25 \mathrm{k} / \mathrm{in}^{2} \\ F_{t u} & =30 \mathrm{k} / \mathrm{in}^{2} \end{aligned}$	$k_{t}=1$
axial tension stress on gross area	D.2a	15.2		
Flexure		Tension	Compression	
elements in uniform stress	F.8.1.1	15.2	see B.5.4.1 thru B.5.4.5 and E.4.2	
elements in flexure	F.8.1.2, F.4.1	19.7	19.7 see also F.4.2	
round tubes	F.6.1	17.7	17.7 see also F.6.2	
rods	F. 7	19.7	19.7	
Bearing				
bolts or rivets on holes	J.3.7a, J.4.7	30.8		
bolts on slots, pins on holes,	J.3.7b, J. 7	20.5		

Axial Compression		Slenderness s	$\begin{gathered} F / \Omega \text { for } \\ S \leq S_{1} \end{gathered}$	S_{1}	$\begin{gathered} F / \Omega \text { for } \\ S_{1}<S<S_{2} \end{gathered}$	S_{2}	$\begin{gathered} F / \Omega \text { for } \\ S \geq S_{2} \end{gathered}$
all shapes member buckling	E. 3	kL/r			14.2-0.074 S	78	51,352/S ${ }^{2}$
Flexural Compression open shapes lateral-torsional buckling closed shapes lateral-torsional buckling rectangular bars lateral-torsional buckling round tubes local buckling	F.2.1 F.3.1 F.4.2 F.6.2	$\begin{gathered} L_{b} /\left(r_{y e} C_{b}{ }^{1 / 2}\right) \\ 2 L_{b} S_{d} /\left(C_{b}\left(l_{y} /\right)^{1 / 2}\right) \\ (d / t)\left(L_{b} /\left(C_{b} d\right)\right)^{1 / 2} \\ R_{b} / t \end{gathered}$	27.7-1.697 $S^{1 / 2}$	70	$16.7-0.073 S$ $16.7-0.140 S^{1 / 2}$ $27.9-0.532 S$ $18.5-0.593 S^{1 / 2}$	94 2400 35 189	86,996 / \mathbf{S}^{2} 23,599 /S $11,420 / S^{2}$ $3,776 /\left[S\left(1+S^{1 / 2} / 35\right)^{2}\right]$
Elements-Uniform Compressio flat elements supported on one edge in columns whose buckling axis is not an axis of symmetry	B.5.4.1	b/t	15.2	7.3	19.0-0.530 S	15	2,417 / S^{2}
flat elements supported on one edge in all other columns and all beams	B.5.4.1	b/t	15.2	7.3	19.0-0.530 S	12.6	$155 / S$
flat elements supported on both edges	B.5.4.2	b/t	15.2	22.8	19.0-0.170 S	39	484 /S
flat elements supported on both edges and with an intermediate stiffener	B.5.4.4	$\lambda_{\text {s }}$	15.2	18.2	16.7-0.088S	78	60,414/S ${ }^{2}$
curved elements supported on both edges	B.5.4.5	R_{b} / t	15.2	31.2	18.5-0.593 S ${ }^{1 / 2}$	189	$3,776 /\left[S\left(1+S^{1 / 2 / 35}\right)^{2}\right]$
flat elements-alternate method	B.5.4.6	$\lambda_{\text {eq }}$	15.2	36.5	19.0-0.106S	63	775 /S
Elements-Flexural Compression							
flat elements supported on both edges	B.5.5.1	b/t	19.7	54.9	27.9-0.150 S	93	1,298 /S
flat elements supported on tension edge, compression edge free	B.5.5.2	b/t	19.7	10.2	27.9-0.810 S	23	4,932 / S^{2}
flat elements supported on both edges and with a longitudinal stiffener	B.5.5.3	b/t	19.7	123.0	27.9-0.067S	208	2,910 /S
flat elements-alternate method	B.5.5.4	$\lambda_{\text {eq }}$	19.7	35.7	27.9-0.231 S	60	844 /S
Elements-Shear flat elements supported on both edges	G. 2	b/t	9.1	38.7	$11.5-0.062 S$	76	38,665 / ${ }^{2}$

TEST REPORT FOR OMNIMAX INTERNATIONAL
Report No.: K0316.01-119-18 RO
Date: 03/17/20

SECTION 12

DRAWINGS

The "As-Built" drawings for the 6 ft high by 6 ft wide Knotwood Fence System, which follow, have been reviewed by Intertek B\&C and are representative of the project reported herein. Project construction was verified by Intertek B\&C per the drawings included in this report. Any deviations are documented herein or on the drawings.

TEST REPORT FOR OMNIMAX INTERNATIONAL
Report No.: K0316.01-119-18 RO
Date: 03/17/20

SECTION 13

REVISION LOG

REVISION \#	DATE	PAGES	REVISION
0	$03 / 17 / 20$	N/A	Original Report Issue

