

OMNIMAX INTERNATIONAL MIAMI-DADE TEST REPORT

SCOPE OF WORK

MIAMI-DADE PERFORMANCE TEST ON 6 FT HIGH BY 6 FT WIDE KNOTWOOD FENCE SYSTEM

REPORT NUMBER

K0316.01-119-18 R0

TEST DATES

10/16/19 - 10/22/19

ISSUE DATE

03/17/20

RECORD RETENTION END DATE

10/22/29

MIAMI-DADE COUNTY NOTIFICATION NO.

ATI19046

LABORATORY CERTIFICATION NO.

19-0321.16

PAGES

36

DOCUMENT CONTROL NUMBER

ATI 00637 (07/24/17) RT-R-AMER-Test-2790 © 2017 INTERTEK

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 R0

Date: 03/17/20

REPORT ISSUED TO

OMNIMAX INTERNATIONAL

30 Technology Parkway South Suite 400 PeachTree Corners, GA 30092

SECTION 1

SCOPE

Intertek Building & Construction (B&C) was contracted by OmniMax International to perform Miami-Dade performance testing on their 6 ft high by 6 ft wide *Knotwood* fence system. Results obtained are tested values and were secured by using the designated test methods. Testing was conducted at the Intertek B&C test facility in York, PA. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory.

For INTERTEK B&C: Scott T. Gladfelter **COMPLETED BY: REVIEWED BY:** Daniel C. Culbert, P.E. TITLE: **Project Engineer** TITLE: **Engineer Team Leader SIGNATURE: SIGNATURE:** 03/17/20 03/17/20 DATE: DATE: Virgal T. Mickley, Jr., P.E. **REVIEWED BY:** Senior Staff Engineer TITLE: **SIGNATURE:** DATE: 03/17/20 STG:vtm/dcg/aas

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Version: 07/24/17 Page 2 of 36 RT-R-AMER-Test-2790

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 R0

Date: 03/17/20

SECTION 2

TEST METHODS

The specimens were evaluated in accordance with the following:

ASCE 7-10, *Minimum Design Loads for Buildings and Other Structures*. American Society of Civil Engineers.

2017 Florida Building Code, Building

SECTION 3

MATERIAL SOURCE

Test samples were provided by the client. Specimens were extruded and powder coated at the ALCAS manufacturing facility in Istanbul, Turkey. Specimens were sublimated at the Knotwood facility in Duluth, GA. Representative samples of the test specimens will be retained by Intertek B&C for a minimum of ten years from the test completion date.

SECTION 4

EQUIPMENT

The support posts were secured in square steel tube structural frames designed to accommodate anchorage of the specimen and application of the required test loads. The specimen was loaded using dead weights. Deflections were measured with linear displacement transducers accurate to 0.01 inch.

SECTION 5

LIST OF OFFICIAL OBSERVERS

NAME	COMPANY
Robert G. Spayd	Intertek B&C
Scott T. Gladfelter	Intertek B&C

Version: 07/27/17 Page 3 of 36 RT-R-AMER-Test-2790

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 R0

Date: 03/17/20

SECTION 6

TEST SPECIMEN DESCRIPTION

SERIES/MODEL	Knotwood
DESCRIPTION	6 ft high by 6 ft wide (per panel section) aluminum privacy fence
PANELS	Twelve, 5/8 in thick by 5-29/32 in wide by 67 in long 6060-T5 aluminum panels (0.060 in wall) installed horizontally (per panel section); each panel was attached to a U-channel with four (two at each end, one side only) #10-16 by 5/8" (0.132 in minor diameter) stainless steel, Philips drive, pancake-head, self-drilling screws
PANEL ATTACHMENT	Two 1-3/16 in square by 68 in long 6060-T5 aluminum "U"-channels (one on each end of the panel); fastened to the post with #10-16 by 1" (0.134 in minor diameter) stainless steel, hex-washer head, self-drilling screws every 12 in
POSTS	3-9/16 in square by 96 in long 6061-T6 aluminum post (0.118 in wall)

SECTION 7

INSTALLATION AND TEST PROCEDURES

Three 6 ft high by 6 ft wide Knotwood fence sections were tested according to the following:

The 2-panel/3-post specimens were constructed in the horizontal orientation by securely anchoring each post in a section of square steel tubing to a depth equal to the embedment specified on the product drawings. Steel weights were uniformly placed on top of the plywood to achieve the desired 1.0 times the design load for a period of 30 seconds. Following this duration, additional weights were added to achieve the 1.5 times the design load. This load was held for a period of 24 hours after which time the weights were removed and the permanent set was recorded. Transducers were mounted to the top, middle, and bottom of each panel at the midspan between posts. Deflection was continuously, electronically recorded during the entire duration of the test. Reference photographs in Section 10 for typical test setup.

Version: 07/27/17 Page 4 of 36 RT-R-AMER-Test-2790

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 R0

Date: 03/17/20

SECTION 8

TEST CALCULATIONS

OmniMax International has provided Intertek-ATI with calculations from PVE, LLC, a Professional Engineer licensed in the state of Florida specifying the design load (based on Exposure C) to be applied for the gravity load test. Reference Section 11 for design calculations.

SPECIMEN	1.0 x DESIGN LOAD (psf)	1.5 x DESIGN LOAD (psf)
6 ft. high by 6 ft. wide Fence System	17.5	26.3

SECTION 9

TEST RESULTS

Test No. 1 - Test Date: 10/16/19

DESIGN LOAD DURATION	MAXIMUM DEFLECTION (inches)			
		TOP	MID	BOTTOM Left / Right
		Left / Right	Left / Right	Leit / Rigiit
1.0x	Initial	0.90/0.86	0.68/0.66	0.32/0.31
1.0x	30 sec	0.91/0.86	0.68/0.66	0.32/0.31
1.5x	Initial	1.52/1.45	1.11/1.07	0.58/0.52
1.5x	24 hours	1.60/1.50	1.11/1.08	0.63/0.58
0x	Initial	0.07/0.06	0.05/0.05	0.08/0.05

Observation: Specimen sustained the 1.5x design load for the 24-hour period

Test No. 2 - Test Date: 10/17/19

DESIGN LOAD	SIGN LOAD DURATION	MAXIMUM DEFLECTION (inches)		
		ТОР	MID	BOTTOM
		Left / Right	Left / Right	Left / Right
1.0x	Initial	0.89/0.87	0.71/0.65	0.36/0.37
1.0x	30 sec	0.90/0.87	0.71/0.65	0.35/0.37
1.5x	Initial	1.48/1.43	1.04/0.98	0.55/0.58
1.5x	24 hours	1.53/1.46	1.05/1.01	0.60/0.61
0x	Initial	0.09/0.07	0.06/0.09	0.10/0.06

Observation: Specimen sustained the 1.5x design load for the 24-hour period

Version: 07/27/17 Page 5 of 36 RT-R-AMER-Test-2790

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 R0

Date: 03/17/20

Test No. 3 - Test Date: 10/21/19

165t No. 5 - 165t Date. 10/21/15				
DESIGN LOAD DURATION		MAXIMUM DEFLECTION (inches)		
		ТОР	MID	воттом
		Left / Right	Left / Right	Left / Right
1.0x	Initial	0.97/0.91	0.69/0.63	0.35/0.34
1.0x	30 sec	0.97/0.91	0.68/0.63	0.35/0.33
1.5x	Initial	1.58/1.52	1.13/1.05	0.58/0.52
1.5x	24 hours	1.63/1.58	1.15/1.09	0.59/0.57
0x	Initial	0.12/0.10	0.08/0.05	0.05/0.11

Observation: Specimen sustained the 1.5x design load for the 24-hour period

SECTION 10

PHOTOGRAPHS

Photo No. 1
Typical Gravity Load Specimen in Fixture

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 R0

Date: 03/17/20

Photo No. 2
Gravity Load Specimen with 1.0 x Design Load Applied

Photo No. 3
Gravity Load Specimen with 1.5 x Design Load Applied

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 R0

Date: 03/17/20

SECTION 11

DESIGN CALCULATIONS

Version: 07/27/17 Page 8 of 36 RT-R-AMER-Test-2790

Knotwood 4x4 Fencing

For

Florida Testing

Date Prepared ... November 26, 2019

Prepared for:

Knotwood a Division of OmniMax International, Inc.

30 Technology Pkwy S, Suite 400/Suite 600 Peachtree Corners, GA 30092 Phone...(855) 566-8966

Prepared by:
PVE, LLC

2000 Georgetowne Drive, Suite 101 Sewickley, PA 15143 Phone ... (724) 444-1100

TABLE OF CONTENTS

	<u>Page No.</u>
TITLE SHEET	1
TABLE OF CONTENTS	2
DESIGN CODES AND STANDARDS	3
GENERAL NOTES	4
DESIGN LOADS	5
DESIGN CALCULATIONS	9
APPENDIX 'A' (REFERENCES)	

DESIGN CODES AND STANDARDS

The following codes and standards, including all specifications referenced within, apply to the design and construction of this project:

- IBC, INTERNATIONAL BUILDING CODE 2015
- FBC, FLORIDA BUILDING CODE 2017
- ASCE 7-10, MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES
- ADM, ALUMINUM DESIGN MANUAL 2010

GENERAL NOTES

- 1. Contractor to verify all dimensions in the field prior to installation. Do not scale off drawings.
- 2. All members shall be saw cut in field as required.
- 3. No splices shall be permitted unless indicated otherwise on the drawings.
- 4. Touch up all scratches with dealer provided colors to match.
- 5. Welding is not permitted, unless otherwise indicated on the drawings.
- 6. The contents show the application of aluminum Knotwood framing components only. The installing contractor is to refer to the project documents for additional requirements.
- 7. Dimensions herein are for engineering purposes only and must be reviewed for the purpose of approval. All conditions are subject to approval and to field verification prior to fabrication or installation.
- 8. Before ordering, fabricating or erecting any material, make any necessary surveys and measurements to verify that in place work has been built according to the contract documents and are within acceptable tolerances. This includes the original buildings and all additions thereto. Notify the Architect/Engineer and owner's representatives of any discrepancies prior to construction.
- 9. Temporary bracing of the system and safety during construction is solely the responsibility of the contractor. Temporary bracing of the system shall remain in place until the system is totally in place. Contractor shall coordinate locations of temporary bracing with other contractors. Refer to drawings for additional criteria.
- 10. This submittal is subject to the review and approval of the project Architect/Engineer of record prior to installation.

JOB TITLE Florida Testing - 4X4 Fencing

JOB NO.	SHEET NO.	
CALCULATED BY DSG	DATE	11/26/19
CHECKED BY JU	DATE	11/26/19

CS2018 Ver 2019.01.24 <u>www.struware.com</u>

STRUCTURAL CALCULATIONS

FOR

Florida Testing - 4X4 Fencing

Florida

PVE LLC

2000 Georgetowne Drive, Suite 101 Sewickley, PA 15143-8992 724-444-1100

JOB TITLE Florida Testing - 4X4 Fencing

JOB NO.	SHEET NO.	
CALCULATED BY DSG	DATE	11/26/19
CHECKED BY JU	DATE	11/26/19

www.struware.com

Code Search

Code: Florida Building Code 2017

Occupancy:

Occupancy Group = R Residential

Risk Category & Importance Factors:

Risk Category = I

Wind factor = 1.00

Snow factor = 0.80

Seismic factor = 1.00

Type of Construction:

Fire Rating:

Roof = 0.0 hrFloor = 0.0 hr

Building Geometry:

Live Loads:

Roof 0 to 200 sf: 20 psf

200 to 600 sf: 24 - 0.02Area, but not less than 12 psf

over 600 sf: 12 psf

Floor:

Typical Floor N/A
Partitions N/A

Partitions N/A

Partitions N/A

Partitions N/A

2000 Georgetowne Drive, Suite 101 Sewickley, PA 15143-8992 724-444-1100

JOB NO.	SHEET NO.	
CALCULATED BY DSG	DATE	11/26/19
CHECKED BY JU	DATE	11/26/19

Wind Loads: ASCE 7 - 10

Ultimate Wind Speed Nominal Wind Speed	115 mph 89.1 mph
Risk Category	os. i ilipli
Exposure Category	С
Enclosure Classif.	Open Building
Internal pressure	+/-0.00
Directionality (Kd)	0.85
Kh case 1	0.849
Kh case 2	0.849
Type of roof	Monoslope

Topographic Factor	(Kzt)
Topography	Flat
Hill Height (H)	0.0 ft
Half Hill Length (Lh)	0.0 ft
Actual H/Lh =	0.00
Use H/Lh =	0.00
Modified Lh =	0.0 ft
From top of crest: x =	0.0 ft
Bldg up/down wind?	downwind
H/Lh= 0.00	$K_1 = 0.000$

x/Lh = 0.00 $K_2 = 0.000$ x/Lh = 0.00 $K_3 = 1.000$

At Mean Roof Ht:

 $Kzt = (1+K_1K_2K_3)^2 = 1.00$

ESCARPMENT

Flexible structure if natural frequency < 1 Hz (T > 1 second). If building h/B>4 then may be flexible and should be investigated. h/B = 0.25 Rigid structure (low rise bldg)

Gust Effect Factor h = 6.0 ft B = 24.0 ft /z (0.6h) = 15.0 ft

G = 0.85 Using rigid structure default

Rigio	<u>d Structure</u>	<u>Flexible or Dyr</u>	<u>namically Se</u>	<u>nsitive St</u>	<u>ructure</u>		
ē=	0.20	34 ncy $(\eta_1) =$	0.0 Hz		<u>.</u>		
$z_{min} = $	500 ft 15 ft	Damping ratio (β) = /b =	0 0.65				
$c = g_Q, g_V =$	0.20 3.4	/α = Vz =	0.15 97.1				
L _z = Q =	427.1 ft 0.95	N ₁ = R _n =	0.00 0.000				
I _z =	0.23	R _h =	28.282	η =	0.000	h =	6.0 ft
G =	0.90 use G = 0.85	$R_B =$	28.282	η =	0.000		
		$R_L =$	28.282	η =	0.000		
		g _R =	0.000				
		R =	0.000				
		Gf =	0.000				

PVE LLC

2000 Georgetowne Drive, Suite 101 Sewickley, PA 15143-8992 724-444-1100

JOB TITLE Florida Testing - 4X4 Fencing

JOB NO.	SHEET NO.	
CALCULATED BY DSG	DATE	11/26/19
CHECKED BY JU	DATE	11/26/19

Wind Loads - Other Structures:

ASCE 7 - 10

Ultimate Wind Pressures

Wind Factor = 1.00

Gust Effect Factor (G) = 0.85 Ultimate Wind Speed = 115 mph Kzt = 1.00 Exposure = C

A. Solid Freestanding Walls & Solid Signs (& open signs with less than 30% open)

		s/n =	1.00	<u>9</u>	Case A &	<u>B</u>
Dist to sign top (h)	6.0 ft	B/s =	2.00		$C_f =$	1.40
Height (s)	6.0 ft	Lr/s =	0.00	F = qz G	GCfAs =	29.1 As
Width (B)	12.0 ft	Kz =	0.849		As =	36.0 sf
Wall Return (Lr) =		qz =	24.4 psf		F =	1047 lbs
Directionality (Kd)	0.85					
Percent of open area		Open reduction			CaseC	
to gross area	0.0%	factor =	1.00	Horiz dist from		
				windward edge	<u>Cf</u>	F=qzGCfAs (psf)
	<u>(</u>	Case C reduction factors		0 to s	1.80	37.4 As
		Factor if s/h>0.8 =	0.80	s to 2s	1.20	24.9 As
	\	Wall return factor				
		for Cf at 0 to s =	1.00			

B. Open Signs & Lattice Frameworks (openings 30% or more of gross area)

Height to centroid of Af (z)	0.0 ft			Kz = Base pressure (qz) =	0.849 24.4 psf
Width (zero if round)	0.0 ft				
Diameter (zero if rect)	0.0 ft			$F = q_z G C_f A_f =$	33.2 Af
Percent of open area		1 =	0.65	Solid Area: A _f =	0.0 sf
to gross area Directionality (Kd)	35.0% 0.85	C _f =	1.6	F =	0 lbs

C. Chimneys, Tanks, Rooftop Equipment (h>60') & Similar Structures

Height to centroid of Af (z	2) 0.0 ft	Kz =	0.849
Cross-Section	Square	Base pressure (qz) =	25.9 psf
Directionality (Kd)	0.90		h/D = 1.00
Height (h)	0.0 ft		
Width (D)	0.0 ft		
Type of Surface	N/A		

Square (wind along dia	gonal)	Square (win	d normal to face)
Cf =	1.00	$C_f =$	1.30
F = qz G Cf Af =	22.0 Af	$F = q_z G C_f A_f =$	28.6 Af
Af =	sf	$A_f =$	0.0 sf
F =	0 lbs	F =	0 lbs

D. Trussed Towers

Height to centroid of Af (z)	0.0 ft	Kz =	0.849
$\epsilon = 0.2$	27	Base pressure (gz) =	27.3 psf

Tower Cross Section triangle

Member Shape flat Diagonal wind factor = 1
Directionality (Kd) 0.95 Round member factor = 1.000

Triangular Cro	ss Section
C _f =	2.38
$F = q_z G C_f A_f =$	55.2 Af
Solid Area: A _f =	0.0 sf
F =	1 lhe

Florida Testing - 4x4 Fencing Design Calculations Project #: 161640.20 Knotwood - Fencing

Designed by: DSG Checked by: JU Date: 11/26/2019

KnotwoodTM Design Calculation:

Methodology:

When checking **Knotwood**TM **Fencing** (slats, posts, etc.), the applied loads, generated from ASCE 7-10, are compared to allowable tension and shear strengths per the Aluminum Design Manual.

Per ASCE 7-10, the fencing is considered a "Solid Freestanding Wall". The fencing posts are considered to be the "screen enclosure support frame". A uniform live load of 5 psf and a concentrated load of 200 lbs is applied directly to frame members. For wind loading the fence is considered to be an "Other Structure - Solid Freestanding Wall".

Miscellaneous:

The drawings and models shown within the calculation sheets are not meant to be used for fabrication nor performing work. During the design process, elements change, and we do not change the CAD drawings in this booklet. They are for illustrative purposes only to assist in the preparation of the calculations and may not accurately represent the actual work to be performed. The contractor shall refer to the actual drawings to perform all their work.

Fastener Requirements:

Self-Tapping Metal Screws - #10 Minimum. Galvanized Unless Noted Otherwise Aluminum Where Noted At High/Salt Exposure

Materials Requirements:

Knotwood Battens:

Aluminum Alloy 6063-T6: Fy=25 ksi (MIN) Fu=30 ksi (MIN) Aluminum Alloy 6061-T6: Fy=35 ksi (MIN) Fu=38 ksi (MIN) Aluminum Alloy 6060-T5: Fy=16 ksi (MIN) Fu=22 ksi (MIN)

All Aluminum Welds:

5556 Electrode: Fu=46 ksi

Material Allowable Stress:

Per the ADM Tables 2-19 to 2-21:

Bending Stress:

$$F_{ab6061} := 19.5 \text{ ksi}$$
 $F_{ab6063} := 15.2 \text{ ksi}$ $F_{ab6060} := 5.2 \text{ ksi}$

Shear Stress:

$$S_I := \frac{(5.91 - 2 (0.059))}{0.059} = 98.17$$
 Use: $F_{avS150} := \frac{38665}{S_I^2} ksi = 4.01 ksi$ (6" Slat)

$$S_2 := \frac{(3.94 - 2 (0.118))}{0.118} = 31.39$$
 Use: $F_{av4x4} := 16.5 \text{ ksi} - 0.107 \text{ ksi} \cdot S_2 = 13.14 \text{ ksi}$ (4x4 Post)

Modulus of Elasticity:

 $E := 10100 \ ksi$

Florida Testing - 4x4 Fencing Design Calculations Project #: 161640.20 Knotwood - Fencing

Designed by: DSG Checked by: JU Date: 11/26/2019

Material Section Properties:

Section Properties:

4x4 Post:

 $I_{x100100} := 1822940 \text{ mm}^4$ (Ixx per Knotwood Techfiles)

 $y_{x100100} = 50 \text{ mm}$

$$S_{x100100} := \frac{I_{x100100}}{y_{x100100}} = (3.65 \cdot 10^4) \text{ mm}^3$$

$$S_{x100100} = 2.22 \text{ in}^3$$

 $I_{v100100} := 1822940 \text{ mm}^4$ (Iyy per Knotwood Techfiles)

 $y_{v100100} = 50 \ mm$

$$S_{y100100} := \frac{I_{y100100}}{Y_{y100100}} = (3.65 \cdot 10^4) \text{ mm}^3$$

$$S_{v100100} = 2.22 \text{ in}^3$$

CALCULATED ON NOMINAL WALL THICKNESS lxx =1822.94 x 10E3 mmE4 lyy =1822.94 x 10E3 mmE4

6" Wide Slat:

 $I_{xS150} := 24500 \text{ mm}^4$ (Ixx per Knotwood Techfiles)

 $y_{xS150} := 8 \ mm$

$$S_{xSI50} := \frac{I_{xSI50}}{y_{xSI50}} = (3.06 \cdot 10^3) \text{ mm}^3$$

 $S_{xS150} = 0.19 \text{ in}^3$

 $I_{vS150} := 1050490 \text{ mm}^4$ (Iyy per Knotwood Techfiles)

 $y_{vS150} = 125 \ mm$

$$S_{yS150} := \frac{I_{yS150}}{y_{yS150}} = (8.40 \cdot 10^3) \text{ mm}^3$$

$$S_{vS150} = 0.51 \text{ in}^3$$

UNSPECIFIED WALL THICKNESS 1.50 ±0.25

CALCULATED ON NOMINAL WALL THICKNESS
lxx =24.50 x 10E3 mmE4
lyy =1050.49 x 10E3 mmE4

Designed by: DSG Checked by: JU Date: 11/26/2019

Load Requirements:

Dead Load:

$$DL_{self1W6525} = 0.960 \frac{kgf}{m} = 0.65 plf$$

$$DL_{self100100} := 3.138 \frac{kgf}{m} = 2.11 \ plf$$

$$DL_{selfS15016} := 1.411 \frac{kgf}{m} = 0.95 plf$$

$$DL_{selfGFS} := 1.227 \frac{kgf}{m} = 0.82 plf$$

$$DL_{self2W6565} := 2.557 \frac{kgf}{m} = 1.72 plf$$

$$DL_{self2C6565} = 2.035 \frac{kgf}{m} = 1.37 plf$$

Live Loads:

$$w_{LL} := 5$$
 psf

$$P_{rea} := 200 \ lbf$$

(Point Load)

Wind Loads:

$$w_{Wind} := 29.1 \ psf$$

(Maximum Ultimate Design Wind Loading - 115 mph wind per Florida Building Code 1616.2.1)

 $w_{WindNominal} := 0.6 \cdot w_{Wind} = 17.46 \, psf$

(Nominal Design Wind Loading)

$$w_{WindS15016} := 6 \text{ in } \cdot w_{Wind} = 14.55 \text{ plf}$$

Florida Testing - 4x4 Fencing Design Calculations Project #: 161640.20 Knotwood - Fencing

Designed by: DSG Checked by: JU Date: 11/26/2019

Figure 1 - Typical Fencing Plan View

Figure 2 - Typical Fencing Elevation View

Designed by: DSG Checked by: JU Date: 11/26/2019

Check 6" Slats:

d := 68 in (Max span considered) h := 6 in (Tributary width on Slat)

Loading:

$$DL_{Total} := DL_{selfS15016} = 0.95 \ plf$$

$$w_{WLTotal} := w_{WindS15016} = 14.55 \ plf$$

$$w_{LLTotal} := w_{LL} \cdot h = 2.50 \ plf$$

$$P_{reginfill} = 50 \text{ lbf}$$
 (Considering infill guardrail loading for fence slats)

Max forces considering slat "pinned"

DL+LL Load Case (Considering LL perpendicular to flat face, so dead load does not cause bending):

$$M_{Distl} := \frac{w_{LLTotal} \cdot d^2}{8} = 0.01 \text{ kip} \cdot \text{ft}$$

$$V_{Dist1} := \frac{w_{LLTotal} \cdot d}{2} = 7.08 \ lbf$$

$$M_{Pointl} := \frac{P_{reqinfill} \cdot d}{4} = 0.07 \text{ kip} \cdot \text{ft}$$

$$V_{Pointl} := P_{reqinfill} + \frac{DL_{Total} \cdot d}{2} = 52.69 \ lbf$$

DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):

$$M_{Dist2} := \frac{0.6 \ w_{WLTotal} \cdot d^2}{8} = 0.04 \ kip \cdot ft$$

$$V_{Dist2} := \frac{0.6 \ w_{WLTotal} \cdot d}{2} + \frac{DL_{Total} \cdot d}{2} = 27.42 \ \textit{lbf}$$

$$M_{Point2} := 0$$
 kip • ft N/A for this load case

$$V_{Point2} := 0$$
 kip N/A for this load case

DL+0.75LL+0.45WL Load Case:

$$M_{Dist3} := \frac{\left(0.75 \ w_{LLTotal} + 0.45 \ w_{WLTotal}\right) \cdot d^2}{8} = 0.03 \ kip \cdot ft$$

$$V_{Dist3} := \frac{\left(0.75 \cdot w_{LLTotal} + 0.45 \cdot w_{WLTotal}\right) \cdot d}{2} = 23.86 \ lbf$$

$$M_{Point3} := \frac{0.45 \ w_{WLTotal} \cdot d^2}{8} + \frac{0.75 \ P_{reqinfill} \cdot d}{4} = 0.08 \ kip \cdot ft \qquad \leftarrow \text{Governs}$$

$$V_{Point3} \coloneqq \frac{DL_{Total} \cdot d}{2} + 0.75 P_{reqinfill} + \frac{0.45 \cdot w_{WLTotal} \cdot d}{2} = 58.74 \text{ lbf}$$

Florida Testing - 4x4 Fencing Design Calculations Project #: 161640.20 Knotwood - Fencing

Designed by: DSG Checked by: JU Date: 11/26/2019

$$M_{MAX} = 0.08 \text{ kip · ft}$$

$$V_{MAX} = 58.74 \ lbf$$

Check Slat Bending:

$$f_{bS150} := \frac{M_{MAX}}{S_{xS150}} = 5.10 \text{ ksi}$$
 < $F_{ab6060} = 5.20 \text{ ksi}$:: OK

Check Slat Shear:

$$A_{S150} := 2 \cdot 147 \ mm \cdot 1.5 \ mm = 0.68 \ in^2$$

$$f_{vSI50} := \frac{V_{MAX}}{A_{SI50}} = 0.09 \text{ ksi}$$
 < $F_{avSI50} = 4.01 \text{ ksi}$: OK

Therefore, use of KES15016 is Acceptable

Florida Testing - 4x4 Fencing Design Calculations Project #: 161640.20 Knotwood - Fencing

Designed by: DSG Checked by: JU Date: 11/26/2019

Check Slat Fasteners:

Allowable Connection Shear:

The allowable connection shear is determined according to Section J.5.6, which specifies a safety factor $\Omega = 3.0$ for fastener connection shear for building-type structures.

$$\Omega := 3.0$$
 (ASD building-type structures)

$$D := 0.19$$
 in (#10 Fastener Diameter)

$$t_l := 0.059 \text{ in}$$
 (Slat Thickness)

$$t_2 = 0.079$$
 in (Slat Support Thickness)

Section J.5.6.1 addresses bearing. Since the edge distance is 0.5 in. > 0.38 in. = 2(0.19in.) = 2D, the allowable bearing force is 2FtuDt/W. Using Ftu from Table A.3.4, the allowable shear for bearing is:

$$F_{tu} := 22 \ ksi$$
 (Table A.3.4)

$$F_{bearing} := \frac{2 \cdot F_{tu} \cdot D \cdot t_I}{Q} = 164.41 \ \textit{lbf} > \frac{V_{MAX}}{2} = 29 \ \textit{lbf} : OK$$

Fastener Pull Over:

For $t_2 > t_1$, Pull Over is not a limit state.

Fastener Shear:

$$F_{vu} := 1.15 \text{ kip}$$
 (#10 Ultimate Shear)

$$F_{shear} := \frac{F_{vu}}{\Omega} = 383.33 \text{ lbf} > \frac{V_{MAX}}{2} = 29 \text{ lbf} :: OK$$

Fastener Tension:

Nominal Pullout (ADM J.5.5, 0.060in **■**≤**■** Le **■**≤**■**0.125 in)

$$K_s := 1.01$$
 ADM J.5.5.1.1

$$D = 0.19$$
 in Nominal diameter of screw

$$F_{tv2} := 30$$
 ksi Tensile yield strength of member not in contact with screw head

$$L_e := t_2 = 0.08$$
 in Screw engaged length

$$R_n := K_s \cdot D \cdot L_e \cdot F_{tv2} = 454.80$$
 lbf (#10 Ultimate Pullout - ADM J.5-1)

$$F_{pullout} := \frac{R_n}{Q} = 151.60 \ lbf > \frac{V_{MAX}}{2} = 29 \ lbf : OK$$

Therefore, use of #10 Screw is acceptable

Designed by: DSG Checked by: JU Date: 11/26/2019

Check Posts:

$$d = 6$$
 ft (Max height of post)

$$h := 6$$
 ft

Tributary width on post

$$DL_{Total} := \frac{12 \ DL_{selfS15016} \cdot h}{d} + DL_{self100100} + 2 \cdot DL_{self1W6525} = 14.78 \ plf$$

Total dead load on post

$$w_{WLTotal} := w_{Wind} \cdot h = 174.60$$
 plf

$$w_{LLTotal} := w_{LL} \cdot h = 30.00$$
 plf

$$P_{rea} = 200.00 \ lbf$$

Max forces considering post cantilevered

DL+LL Load Case (Considering LL perpendicular to flat face, so dead load does not cause bending):

$$M_{Distl} := \frac{w_{LLTotal} \cdot d^2}{2} = 0.54 \text{ kip } \cdot \text{ft}$$

$$V_{Dist1} := w_{LLTotal} \cdot d = 180.00$$
 lbf

$$M_{Pointl} := P_{reg} \cdot d = 1.20 \text{ kip} \cdot \text{ft}$$

← Governs

$$V_{Pointl} := P_{req} + DL_{Total} \cdot d = 288.66$$
 lbf

DL+0.6WL Load Case (Considering WL perpendicular to flat face, so dead load does not cause bending):

$$M_{Dist2} := \frac{0.6 \ w_{WLTotal} \cdot d^2}{2} = 1.89 \ kip \cdot ft$$

$$V_{Dist2} := 0.6 \ w_{WLTotal} \cdot d + DL_{Total} \cdot d = 717.22 \ lbf$$

$$M_{Point2} := 0 \ kip \cdot ft$$

N/A for this load case

$$V_{Point2} := 0 \ kip$$

N/A for this load case

DL+0.75LL+0.45WL Load Case:

$$M_{Dist3} := \frac{\left(0.75 \ w_{LLTotal} + 0.45 \ w_{WLTotal}\right) \cdot d^2}{2} = 1.82 \ \textit{kip} \cdot \textit{ft}$$

$$V_{Dist3} := \left(0.75 \cdot w_{LLTotal} + 0.45 \cdot w_{WLTotal}\right) \cdot d = 606.42 \ \textit{lbf}$$

$$M_{Point3} := \frac{0.45 \ w_{WLTotal} \cdot d^2}{2} + 0.75 \ P_{req} \cdot d = 2.31 \ kip \cdot ft$$

$$V_{Point3} := DL_{Total} \cdot d + 0.75 P_{req} + 0.45 \cdot w_{WLTotal} \cdot d = 710.08$$
 lbf

Florida Testing - 4x4 Fencing Design Calculations Project #: 161640.20 Knotwood - Fencing

Designed by: DSG Checked by: JU Date: 11/26/2019

$$M_{MAX2} = 2.31 \ kip \cdot ft$$

$$V_{MAX2} = 717.22$$
 lbf

Check Post Bending:

$$F_{cr6063post65} := \frac{M_{MAX2}}{S_{y100100}} = 12.48 \text{ ksi} < F_{ab6061} = 19.50 \text{ ksi} :: OK$$
 4x4 Post Maximum

Check Post Shear:

$$A_{P4x4} := 2 \cdot 3.58 \text{ in} \cdot 0.118 \text{ in} = 0.84 \text{ in}^2$$
 (Web Area)

$$F_{vpost} := \frac{V_{MAX2}}{A_{P4x4}} = 0.85 \text{ ksi}$$
 < $F_{av4x4} = 13.14 \text{ ksi}$: OK

APPENDIX 'A'

(References)

Section 1616.2 from the 2017 Florida Building Code:

1616.2 General design for specific occupancies and structures.

1616.2.1 Fences.

Fences not exceeding 6 feet (1829 mm) in height from grade may be designed for 75 mph (33 m/s) fastest mile wind speed or 115 mph (40 m/s) 3-second gust.

1616.2.1.1 Wood fences.

Wood fence design shall be as specified by Section 2328.

1616.2.2 Sway forces in stadiums.

- 1. The sway force applied to seats in stadiums, grandstands, bleachers and reviewing stands shall be not less than 24 pounds per lineal foot (350 N/m), applied perpendicularly and along the seats.
- 2. Sway forces shall be applied simultaneously with gravity loads.
- 3. Sway forces need not be applied simultaneously with other lateral forces.

1616.3 Deflection.

1616.3.1 Allowable deflections.

The deflection of any structural member or component when subjected to live, wind and other superimposed loads set forth herein shall not exceed the following:

1. Roof and ceiling or components supporting plaster

L/360

SELECTOR GUIDE & PERFORMANCE DATA

OLL	LOI		שעוטנ מ	I LINI O	KINIAITOL	DAIA								
Part	Numb	er	1076000	1112000	1080000	1132000	1114000	1117000	1119000	1121000	1124000	1125000	1078000	1126000
Des	criptior	1	10-16x3/4"	12-14x7/8"	12-14x1"	12-14x1"	12-14x1-1/2"	12-14x2"	1/4-14x1"	1/4-14x1-1/2"	1/4-20x1-1/8"	1/4-20x1-1/2"	1/4-20x2"	1/4-20x2-1/2"
Hea	d Style		HWH	HWH	HWH	UPFH***	HWH	HWH	HWH	HWH	HWH	HWH	HWH	HWH
Drill	Point		3	3	3	3	3	3	3	3	4	4	4	4
Drill	ing Ca _l	p	.150"	.187"	.187"	.187"	.187"	.187"	.210"	.210"	.210"312"	.210"312"	.210"312"	.210"312"
	Load ring Ar	ea*	.500	.470	.500"	.500°	1.000	1.500	.450°	.950************************************	.500*	.830"	1.330	1.830"
Insta	allation	Tool	5/16" Driv- Tru [™] Socket (P/N: 1513910)	5/16" Driv- Tru [™] Socket (P/N: 1513910)	5/16" Driv- Tru [™] Socket (P/N: 1513910)	#3 Phillips Bit	5/16" Driv- Tru [™] Socket (P/N: 1513910)	5/16" Driv- Tru [™] Socket (P/N: 1513910)	3/8" Driv- Tru [™] Socket (P/N: 1574910)					
PUI	LOU	T VAL	UES (AVE	RAGE LE	S. ULTIM	ATE)								
		ksi												
	18	45.5	401	400	400	400	400	400	475	475				
	16	63	699	561	561	561	561	561	631	631	827	827	827	827
	14	55.5	1010	964	964	964	964	964	1062	1062	1258	1258	1258	1258
STEEL GAUGE	12	63	1680	1516	1516	1516	1516	1516	1878	1878	1946	1946	1946	1946
STEEL	1/8	56.9	2183	2149	2149	2149	2149	2149	2320	2320	2685	2685	2685	2685
	3/16	65.3		2877	2877	2497	2877	2877	3668	3668	3572	3572	3572	3572
	1/4	48.1									4719	4719	4719	4719
	5/16	49.1									4699	4699	4699	4699
33-T5	1/8	32.4	745	1008	1008	1008	1008	1008	1017	1017	970	970	970	970
ALUMINUM 6063-T5	1/4	32.1		2543	2543	2462	2543	2543	3080	3080	2760	2760	2760	2760
ALUMIR	3/8	27.7									3851	3851	3851	3851
SH	AR V	/ALUE	S (AVER	AGE LBS.	ULTIMATI	Ε)								
	18-	-18	996	965	965	965	965	965	1100	1100	1026	1026	1026	1026
	18-	-14	1872	1803	1803	1803	1803	1803	2132	2132	2089	2089	2089	2089
GE*	16-	-16	1331	1360	1360	1360	1360	1360	1414	1414	1359	1359	1359	1359
STEEL GAUGE**	14-	-14		1815	1815	1815	1815	1815	2439	2439	2357	2357	2357	2357
STE	1/8-	3/16							2636	2636	2748	2748	2748	2748
	3/16	5-1/4									2881	2881	2881	2881
	12-	1/4									2843	2843	2843	2843
ALUMINUM 6063-T5**	1/8-		1526	1846	1846	1846	1846	1846	2087	2087	2106	2106	2106	2106
		-1/4		2488	2488	2180	2488	2488	3328	3328	3062	3062	3062	3062
			PROPER											
F,	eld Streq , Ksi (Mi	Pa)	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa	134 ksi 920 Mpa
	sile Stre , Ksi (Mi		152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa	152 ksi 1054 Mpa
* IMPO	ORTANT	· Maxim	num load bear	ing area is ing	licated by brac	kets						***	Undercut Phi	llips Flat Head

^{*} IMPORTANT: Maximum load bearing area is indicated by brackets.

*** Undercut Phillips Flat Head

800-BUILDEX I www.itwbuildex.com

Teks°, Teks Select¹ and Climaseal ACR³ are trademarks of ITW Buildex and Illinois Tool Works, Inc.

Dril-Flex is a registered trademark of Elco, Inc.

©2011 ITW Buildex and Illinois Tool Works, Inc.

BX3_rev0611

^{**} KSI values are the same as listed in the Pullout Values table.

Table 2-19
ALLOWABLE STRESSES FOR BUILDING-TYPE STRUCTURES (UNWELDED)

Allowable Stresses F/Ω (k/in²)	F/ Ω	6	061 – T6	, T6510, T6511	Extrusions	
Axial Tension axial tension stress on net	D.2b	19.5	_		6061 – T6 6351 - T5	Pipe Extrusions
effective area	5.25	10.0			$F_{tv} = 35 \text{ k/in}^2$	$E = 10,100 \text{ k/in}^2$
axial tension stress on gross	D.2a	21.2			$F_{cv} = 35 \text{ k/in}^2$	$k_t = 1$
area					$F_{tu} = 38 \text{ k/in}^2$	
Flexure		Tension	Compr	ession		
elements in uniform stress	F.8.1.1	19.5	see B.5	.4.1 thru	B.5.4.5 and E.4.2	
elements in flexure	F.8.1.2, F.4.1	27.6	27.6	see al	so F.4.2	
round tubes	F.6.1	24.2	24.8	see al	so F.6.2	
rods	F.7	27.6	27.6			
Bearing						
bolts or rivets on holes	J.3.7a, J.4.7	39.0				
bolts on slots, pins on holes, flat surfaces	J.3.7b, J.7	25.9				

Axial Compression		Slenderness S	F/Ω for $S \leq S_1$	S ₁	F/Ω for $S_1 < S < S_2$	S_2	F/Ω for $S \geq S_2$
all shapes member buckling	E.3	kL/r			20.3 – 0.127 S	66	51,352 /S ²
Flexural Compression							
open shapes lateral-torsional buckling	F.2.1	$L_b/(r_{ye}C_b^{1/2})$			23.9 – 0.124 S	79	86,996 /S ²
closed shapes lateral-torsional buckling	F.3.1	$2L_bS_c/(C_b(I_yJ)^{1/2})$			23.9 – 0.238 S ^{1/2}	1685	23,599 /S
rectangular bars lateral- torsional buckling	F.4.2	$(d/t)(L_b/(C_bd))^{1/2}$			40.5 – 0.928 S	29	11,420 /S ²
round tubes local buckling	F.6.2	R_b/t	39.3 – 2.702 S ^{1/2}	55	26.2 - 0.944 S ^{1/2}	141	3,776 /[S(1+S ^{1/2} /35) ²]
Elements—Uniform Compression	<u>on</u>						
flat elements supported on one edge in columns whose buckling axis is not an axis of symmetry	B.5.4.1	b/t	21.2	6.7	27.3 – 0.910 S	12	2,417 /S ²
flat elements supported on one edge in all other columns and all beams	B.5.4.1	b/t	21.2	6.7	27.3 – 0.910 S	10.5	186 /S
flat elements supported on both edges	B.5.4.2	b/t	21.2	20.8	27.3 – 0.291 S	33	580 /S
flat elements supported on both edges and with an intermediate stiffener	B.5.4.4	λ_{s}	21.2	17.8	23.9 – 0.149 S	66	60,414 /S ²
curved elements supported on both edges	B.5.4.5	R_b/t	21.2	27.6	26.2 – 0.944 S ^{1/2}	141	3,776 /[S(1+S ^{1/2} /35) ²]
flat elements—alternate method	B.5.4.6	$\lambda_{ m eq}$	21.2	33.3	27.3 – 0.182 S	52	928 /S
Elements—Flexural Compression	<u>on</u>						
flat elements supported on both edges	B.5.5.1	b/t	27.6	49.3	40.5 – 0.262 S	77	1,563 /S
flat elements supported on tension edge, compression edge free	B.5.5.2	b/t	27.6	9.2	40.5 – 1.412 S	19	4,932 /S ²
flat elements supported on both edges and with a longitudinal stiffener	B.5.5.3	b/t	27.6	110.5	40.5 – 0.117 S	173	3,502 /S
flat elements—alternate method	B.5.5.4	λ_{eq}	27.6	32.0	40.5 – 0.403 S	50	1,016 /S
Elements—Shear flat elements supported on both edges	G.2	b/t	12.7	35.3	16.5 – 0.107 S	63	38,665 /S ²

VI-28 January 2010

Table 2-20 ALLOWABLE STRESSES FOR BUILDING-TYPE STRUCTURES (UNWELDED)

6063 - T5

Extrusions (Up thru 0.500 in. thick)

/ /		.,			=x
Axial Tension			_	6063 - T52	Extrusions (Up thru 1.000 in. thick)
axial tension stress on net	D.2b	11.3		$F_{tv} = 16 \text{ k/in}^2$	$E = 10,100 \text{ k/in}^2$
effective area				$F_{cv} = 16 \text{ k/in}^2$	$k_t = 1$
axial tension stress on gross	D.2a	9.7		$F_{tu} = 22 \text{ k/in}^2$	
area					
Flexure		Tension	Compi	ression	_
elements in uniform stress	F.8.1.1	9.7	see B.5	5.4.1 thru B.5.4.5 and E.4.2	
elements in flexure	F.8.1.2, F.4.1	12.6	12.6	see also F.4.2	
round tubes	F.6.1	11.3	11.3	see also F.6.2	
rods	F.7	12.6	12.6		
Bearing					_
bolts or rivets on holes	J.3.7a, J.4.7	22.6			
bolts on slots, pins on holes,	J.3.7b, J.7	15.0			
flat surfaces					

Allowable Stresses F/Ω (k/in²) Section

 F/Ω

flat surfaces							
		Slenderness	F/Ω for		F/Ω for	_	F/Ω for
Axial Compression		S	S ≤ S ₁	S ₁	$S_1 < S < S_2$	S ₂	S ≥ S ₂
all shapes member buckling	E.3	kL/r			8.9 – 0.037 S	99	51,352 /S ²
Flexural Compression open shapes lateral-torsional buckling	F.2.1	$L_b/(r_{ye}C_b^{-1/2})$			10.5 – 0.036 S	119	86,996 /S ²
closed shapes lateral-torsional buckling	F.3.1	$2L_bS_c/(C_b(I_yJ)^{1/2})$			10.5 – 0.070 S ^{1/2}	3823	23,599 /S
rectangular bars lateral-torsional buckling	F.4.2	$(d/t)(L_b/(C_bd))^{1/2}$			17.2 – 0.256 S	45	11,420 /S ²
round tubes local buckling	F.6.2	R_b/t	17.5 – 0.917 S ^{1/2}	95	11.6 - 0.320 S ^{1/2}	275	3,776 /[S(1+S ^{1/2} /35) ²]
Elements—Uniform Compression flat elements supported on one edge in columns whose buckling axis is not an axis of symmetry	o <u>n</u> B.5.4.1	b/t	9.7	8.2	11.8 – 0.260 S	19	2,417 /S ²
flat elements supported on one edge in all other columns and all beams	B.5.4.1	b/t	9.7	8.2	11.8 – 0.260 S	15.9	122 /S
flat elements supported on both edges	B.5.4.2	b/t	9.7	25.6	11.8 – 0.083 S	50	382 /S
flat elements supported on both edges and with an intermediate stiffener	B.5.4.4	λ_{s}	9.7	18.8	10.5 – 0.044 S	99	60,414 /S ²
curved elements supported on both edges	B.5.4.5	R_b/t	9.7	36.7	11.6 - 0.320 S ^{1/2}	275	3,776 /[S(1+S ^{1/2} /35) ²]
flat elements—alternate method	B.5.4.6	λ_{eq}	9.7	41.0	11.8 – 0.052 S	80	611 /S
Elements—Flexural Compression	<u>on</u>						
flat elements supported on both edges	B.5.5.1	b/t	12.6	62.9	17.2 – 0.072 S	119	1,017 /S
flat elements supported on tension edge, compression edge free	B.5.5.2	b/t	12.6	11.7	17.2 – 0.389 S	29	4,932 /S ²
flat elements supported on both edges and with a longitudinal stiffener	B.5.5.3	b/t	12.6	141.1	17.2 – 0.032 S	266	2,280 /S
flat elements—alternate method	B.5.5.4	$\lambda_{ m eq}$	12.6	40.9	17.2 – 0.111 S	77	661 /S
Elements—Shear flat elements supported on both edges	G.2	b/t	5.8	43.6	7.2 – 0.031 S	96	38,665 /S ²

January 2010 VI-29

Table 2-21 ALLOWABLE STRESSES FOR BUILDING-TYPE STRUCTURES (UNWELDED)

Allowable Stresses F/Ω (k/in²)	Section	F/Ω			6063 – T6	Extrusions and Pipe
Axial Tension			_		$F_{tv} = 25 \text{ k/in}^2$	$E = 10,100 \text{ k/in}^2$
axial tension stress on net effective area	D.2b	15.4			$F_{cy} = 25 \text{ k/in}^2$ $F_{ty} = 30 \text{ k/in}^2$	$k_t = 1$
axial tension stress on gross area	D.2a	15.2			.u	
Flexure		Tension	Compre	ession		-
elements in uniform stress	F.8.1.1	15.2	see B.5	.4.1 thru	B.5.4.5 and E.4.2	-
elements in flexure	F.8.1.2, F.4.1	19.7	19.7	see als	so F.4.2	
round tubes	F.6.1	17.7	17.7	see als	so F.6.2	
rods	F.7	19.7	19.7			
Bearing						-
bolts or rivets on holes	J.3.7a, J.4.7	30.8				
bolts on slots, pins on holes, flat surfaces	J.3.7b, J.7	20.5				
		Slandarnass	E/C) for	E/C) for

Axial Compression		Slenderness S	F/Ω for $S \leq S_1$	S ₁	F/Ω for $S_1 \qquad S_1 < S < S_2 \qquad S_2$		F/Ω for $S \geq S_2$
all shapes member buckling	E.3	kL/r			14.2 – 0.074 S	78	51,352 /S ²
Flexural Compression							
open shapes lateral-torsional buckling	F.2.1	$L_b/(r_{ye}C_b^{1/2})$			16.7 – 0.073 S	94	86,996 /S ²
closed shapes lateral-torsional buckling	F.3.1	$2L_bS_c/(C_b(I_yJ)^{1/2})$			16.7 – 0.140 S ^{1/2}	2400	23,599 /S
rectangular bars lateral-torsional buckling	F.4.2	$(d/t)(L_b/(C_bd))^{1/2}$			27.9 – 0.532 S	35	11,420 /S ²
round tubes local buckling	F.6.2	R_b/t	27.7 - 1.697 S ^{1/2}	70	18.5 – 0.593 S ^{1/2}	189	3,776 /[S(1+S ^{1/2} /35) ²]
Elements—Uniform Compression	<u>on</u>						
flat elements supported on one edge in columns whose buckling axis is not an axis of symmetry	B.5.4.1	b/t	15.2	7.3	19.0 – 0.530 S	15	2,417 /S ²
flat elements supported on one edge in all other columns and all beams	B.5.4.1	b/t	15.2	7.3	19.0 – 0.530 S	12.6	155 /S
flat elements supported on both edges	B.5.4.2	b/t	15.2	22.8	19.0 – 0.170 S	39	484 /S
flat elements supported on both edges and with an intermediate stiffener	B.5.4.4	λ_{s}	15.2	18.2	16.7 – 0.088 S	78	60,414 /S ²
curved elements supported on both edges	B.5.4.5	R_b/t	15.2	31.2	18.5 – 0.593 S ^{1/2}	189	3,776 /[S(1+S ^{1/2} /35) ²]
flat elements—alternate method	B.5.4.6	$\lambda_{ m eq}$	15.2	36.5	19.0 – 0.106 S	63	775 /S
Elements—Flexural Compression	<u>on</u>						
flat elements supported on both edges	B.5.5.1	b/t	19.7	54.9	27.9 – 0.150 S	93	1,298 /S
flat elements supported on tension edge, compression edge free	B.5.5.2	b/t	19.7	10.2	27.9 – 0.810 S	23	4,932 /S ²
flat elements supported on both edges and with a longitudinal stiffener	B.5.5.3	b/t	19.7	123.0	27.9 – 0.067 S	208	2,910 /S
flat elements—alternate method	B.5.5.4	λ_{eq}	19.7	35.7	27.9 – 0.231 S	60	844 /S
Elements—Shear flat elements supported on both edges	G.2	b/t	9.1	38.7	11.5 – 0.062 S	76	38,665 /S ²

VI-30 January 2010

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 R0

Date: 03/17/20

SECTION 12

DRAWINGS

The "As-Built" drawings for the 6 ft high by 6 ft wide *Knotwood* Fence System, which follow, have been reviewed by Intertek B&C and are representative of the project reported herein. Project construction was verified by Intertek B&C per the drawings included in this report. Any deviations are documented herein or on the drawings.

Version: 07/27/17 Page 32 of 36 RT-R-AMER-Test-2790

CUSTOMER APPROVAL DRAWING	V.S.	
EXCLUSIVE SHAPES — WHERE THE SHAPE IS DEVELOPED AS AN "EXCLUSIVE", THE CUSTOMER WHOSE NAME APPEARS ON THIS DRAWING SHALL ACCEPT FULL RESPONSIBILITY FOR ALL CLAIMS MADE AGAINST THE CUSTOMER, PERSONS CLAIMING UNIDER THE CUSTOMER, OR CAPRAL LIMITED, IF THE EXTRUDED SHAPE SHOWN AND PRODUCTS MADE FROM IT INFRINGES ANY INTELLECTUAL PROPERTY RIGHT, INCLUDING PATENT, DESIGN OR COPYRIGHT, OR IS THE SUBJECT OF CONFIDENTIAL INFORMATION AND THE CUSTOMER SHALL INDEMNIFY CAPRAL LIMITED AGAINST ALL DAMAGES, LOSSES AND EXPENSES ARISING OUT OF ATTY CLAIM.	Y	© CAPRAL LIMITED 2011 ACN 78 (104 213 49) E 22119 02 LUQUIS 102 32ETHAL 100
SHAPE DIMENSIONS — THIS DRAWING HAS BEEN CHECKED FOR CORRECT DIMENSIONS, TOLERANCES AND ANY OTHER SPECIAL WRITTEN REQUIREMENTS BY THE CUSTOMER. ALTERATIONS MADE AFTER TOOLAGE MANUFACTURE IS COMMENCED WILL BE AT THE CUSTOMER'S ACCOUNT.		24585 TS47488/A HANDLING
CUSTOMER		
SIGNATURE DATE		
06.00 ± 00.00	×	NOT APPLICABLE WRAPPING .S.
	CALCULATED ON NOMINAL WALL THICKNESS Ixx =1822.94 x 10E3 mmE4 Iyy =1822.94 x 10E3 mmE4	NOT APPLICABLE
100.00		PACKING
A A TOTAL TO	Test sample complies with these details. Deviations are noted. Report # 16031 6,01-119-18	
UNSPECIFIED WALL THICKNESS 3.00 ±0.30	Date 12/6/19 Tech STG	
A = 1.40 R		NOT APPLICABLE
		NOT APPLICABLE
STRAIGHTNESS mm 2 00 X MAZANGENATH TOPED AND SHOUND WILL BE IN	3 <u>[24]25[26]</u> ACCORDANCE MILITY AS A NAVISTRIGET SPORTON ACCORDA	ACCOUNT NO.
FLATNESS mm Officer / 25mm ALL CORNERS (Admin RADUS UNL) 1 WST 0.80 X 101AL LENGTH; 2" WAX ANGULARITY ± 2" SPECIFIED		00100 13.10.2011 24.16 6854
SPECIAL TOLERANCES STD 10 3/4 0 2/4 10 1/2 0 1/2 10 1/4 0 ESS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18	S IHAN 1/4 U	F00110 I 00 I
12X ALLEASHI V. 1930E V. 2 1930E V. 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		13.10.2011 E22119 02 13.10.2011 24585 TS47488/A
SSUE MODIFICATION DRN DATE PACKING	141 A M SHS 100x3 E.R. 1	3.10.2011 Z4303 1347400/A

CUSTOMER APPROVAL DRAWING					
EXCLUSIVE SHAPES — WHERE THE SHAPE IS DEVELOPED AS AN "EXCUSTOMER WHOSE NAME APPEARS ON THIS DRAWING SHALL ACCEP ALL CLAIMS MADE AGAINST THE CUSTOMER, PERSONS CLAIMING UNI	FULL RESPONSIBILITY FOR			artek	CAPRAL
CAPRAL LIMITED, IF THE EXTRUDED SHAPE SHOWN AND PRODUCTS ANY INTELLECTUAL PROPERTY RIGHT, INCLUDING PATENT, DESIGN OF SUBJECT OF CONFIDENTIAL INFORMATION AND THE CUSTOMER SHALL	MADE FROM IT INFRINGES COPYRIGHT, OR IS THE				© (APRAL LIMITED 2013 ACN 78 004 213 ISSUE P13322R 01
LIMITED AGAINST ALL DAMAGES, LOSSES AND EXPENSES ARISING OU	T OF ANY CLAIM.		Test sample con	plies with these details.	31033 TS49640/B
SHAPE DIMENSIONS — THIS DRAWING HAS BEEN CHECKED FOR CORI TOLERANCES AND ANY OTHER SPECIAL WRITTEN REQUIREMENTS BY ALTERATIONS MADE AFTER TOOLAGE MANUFACTURE IS COMMENCED	THE CUSTOMER.		Devia	tions are noted.	HANDLING
CUSTOMER'S ACCOUNT. CUSTOMER			Report # 160316		
SIGNATURE DATE		ΙΥ	Date 12/6/19	Tech 57G-	
	 -	75.00			
	VS				
	0.55	150.00 ±0.90		!	NOT APPLICABLE
	+ 00	100.00 10.00		-	
00	16.0				
Χ [∞]	1			X	WRAPPING
†					
	R3.00	1.50 ±0.30			
	i -	48.00	1.50 ±0.30	i	
					NOT APPLICABLE
		ΙΥ			PACKING
		UNSPECIFIED WALL THICKNE	SS 1.50 ±0.25		
		CALCULATED ON NOMINAL V	VALL THICKNESS		
		Ixx =24.50 x 10E3 mmE4			
		lyy =1050.49 x 10E3 mmE4			
					NOT APPLICABLE
	1234567	<u> 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 </u>			
	STRAIGHTNESS mm 0.70 FLATNESS mm 0.15 TWIST 0.80	1.X DWARNERNAUH Troperances Where NOT SHOWN WILL BE IN ACCORDANCE DWMM/ZEMM D X 101AL LENGTH; 5" MAX" SPECIFIED	TOTAL PER min ANDD PER com FAINT PER min SHAPE DINER	DD PTY LTD 12	1262
	ANGULARITY	TO TO 3/4 0 3/4 TO 1/2 0 1/2 TO 1/4 0 LESS THAN 1/4 14 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2	689 327 327 KNOTWOO	DD PTY LTD E.R. 19.0 CIFIED 129 A.K. 19.0	
		4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2	6 522 1.411 488 NOT SPE 6 CD mm CLASS COMPLEAT AFPLICATION 151 C C DECKING	CIFIED 129 A.K. 19.0 APPROJED F.E. 19.0	4. ZUTS ENQUIFY NO SECTION NO
	- Janes Janes		T.O. TO TO TOPONINO	Į1.2. 10.0	<u></u>

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR OMNIMAX INTERNATIONAL

Report No.: K0316.01-119-18 R0

Date: 03/17/20

SECTION 13

REVISION LOG

REVISION #	DATE	PAGES	REVISION
0	03/17/20	N/A	Original Report Issue